Factor-criticality and matching extension in DCT-graphs
Discussiones Mathematicae. Graph Theory, Tome 17 (1997) no. 2, pp. 271-278.

Voir la notice de l'article provenant de la source Library of Science

The class of DCT-graphs is a common generalization of the classes of almost claw-free and quasi claw-free graphs. We prove that every even (2p+1)-connected DCT-graph G is p-extendable, i.e., every set of p independent edges of G is contained in a perfect matching of G. This result is obtained as a corollary of a stronger result concerning factor-criticality of DCT-graphs.
Keywords: factor-criticality, matching extension, claw, dominated claw toes
@article{DMGT_1997_17_2_a5,
     author = {Favaron, Odile and Favaron, Evelyne and Ryj\'a\v{c}ek, Zden\u{e}k},
     title = {Factor-criticality and matching extension in {DCT-graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {271--278},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_1997_17_2_a5/}
}
TY  - JOUR
AU  - Favaron, Odile
AU  - Favaron, Evelyne
AU  - Ryjáček, Zdenĕk
TI  - Factor-criticality and matching extension in DCT-graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 1997
SP  - 271
EP  - 278
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_1997_17_2_a5/
LA  - en
ID  - DMGT_1997_17_2_a5
ER  - 
%0 Journal Article
%A Favaron, Odile
%A Favaron, Evelyne
%A Ryjáček, Zdenĕk
%T Factor-criticality and matching extension in DCT-graphs
%J Discussiones Mathematicae. Graph Theory
%D 1997
%P 271-278
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_1997_17_2_a5/
%G en
%F DMGT_1997_17_2_a5
Favaron, Odile; Favaron, Evelyne; Ryjáček, Zdenĕk. Factor-criticality and matching extension in DCT-graphs. Discussiones Mathematicae. Graph Theory, Tome 17 (1997) no. 2, pp. 271-278. http://geodesic.mathdoc.fr/item/DMGT_1997_17_2_a5/

[1] A. Ainouche, Quasi claw-free graphs. Preprint, submitted.

[2] A. Ainouche, O. Favaron and H. Li, Global insertion and hamiltonicity in DCT-graphs, Discrete Math. (to appear).

[3] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (Macmillan, London and Elsevier, New York, 1976).

[4] O. Favaron, Stabilité, domination, irredondance et autres parametres de graphes (These d'Etat, Université de Paris-Sud, 1986).

[5] M. Las Vergnas, A note on matching in graphs, Cahiers Centre Etudes Rech. Opér. 17 (1975) 257-260.

[6] M.D. Plummer, On n-extendable graphs, Discrete Math. 31 (1980) 201-210, doi: 10.1016/0012-365X(80)90037-0.

[7] M.D. Plummer, Extending matchings in claw-free graphs, Discrete Math. 125 (1994) 301-308, doi: 10.1016/0012-365X(94)90171-6.

[8] M.D. Plummer, Extending matchings in graphs: A survey, Discrete Math. 127 (1994) 277-292, doi: 10.1016/0012-365X(92)00485-A.

[9] Z. Ryjácek, Almost claw-free graphs, J. Graph Theory 18 (1994) 469-477, doi: 10.1002/jgt.3190180505.

[10] Z. Ryjácek, Matching extension in $K_{1,r}$-free graphs with independent claw centers, Discrete Math. 164 (1997) 257-263, doi: 10.1016/S0012-365X(96)00059-3.

[11] D.P. Sumner, Graphs with 1-factors, Proc. Amer. Math. Soc. 42 (1974) 8-12.

[12] D.P. Sumner, 1-factors and antifactor sets, J. London Math. Soc. 13 (2) (1976) 351-359, doi: 10.1112/jlms/s2-13.2.351.