Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_1997_17_2_a3, author = {Kratochv{\'\i}l, Jan and Schiermeyer, Ingo}, title = {On the computational complexity of {(O,P)-partition} problems}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {253--258}, publisher = {mathdoc}, volume = {17}, number = {2}, year = {1997}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_1997_17_2_a3/} }
TY - JOUR AU - Kratochvíl, Jan AU - Schiermeyer, Ingo TI - On the computational complexity of (O,P)-partition problems JO - Discussiones Mathematicae. Graph Theory PY - 1997 SP - 253 EP - 258 VL - 17 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_1997_17_2_a3/ LA - en ID - DMGT_1997_17_2_a3 ER -
Kratochvíl, Jan; Schiermeyer, Ingo. On the computational complexity of (O,P)-partition problems. Discussiones Mathematicae. Graph Theory, Tome 17 (1997) no. 2, pp. 253-258. http://geodesic.mathdoc.fr/item/DMGT_1997_17_2_a3/
[1] M.R. Garey and D.S. Johnson, Computers and Intractability, A Guide to the Theory of NP-Completeness, W.H. Freeman and Company, New York, 1979.
[2] J. Bucko, M. Frick, P. Mihok and R. Vasky, Uniquely partitionable graphs, Discussiones Mathematicae Graph Theory 17 (1997) 103-113.
[3] P. Mihók, G. Semanišin, Additive hereditary properties are uniquely factorizable, Czecho-Slovak Conference on Combinatorics and Graph Theory, Chudenice, 1997.