On the computational complexity of (O,P)-partition problems
Discussiones Mathematicae. Graph Theory, Tome 17 (1997) no. 2, pp. 253-258
Cet article a éte moissonné depuis la source Library of Science
We prove that for any additive hereditary property P > O, it is NP-hard to decide if a given graph G allows a vertex partition V(G) = A∪B such that G[A] ∈ (i.e., A is independent) and G[B] ∈ P.
Keywords:
computational complexity, graph properties, partition problems
@article{DMGT_1997_17_2_a3,
author = {Kratochv{\'\i}l, Jan and Schiermeyer, Ingo},
title = {On the computational complexity of {(O,P)-partition} problems},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {253--258},
year = {1997},
volume = {17},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_1997_17_2_a3/}
}
Kratochvíl, Jan; Schiermeyer, Ingo. On the computational complexity of (O,P)-partition problems. Discussiones Mathematicae. Graph Theory, Tome 17 (1997) no. 2, pp. 253-258. http://geodesic.mathdoc.fr/item/DMGT_1997_17_2_a3/
[1] M.R. Garey and D.S. Johnson, Computers and Intractability, A Guide to the Theory of NP-Completeness, W.H. Freeman and Company, New York, 1979.
[2] J. Bucko, M. Frick, P. Mihok and R. Vasky, Uniquely partitionable graphs, Discussiones Mathematicae Graph Theory 17 (1997) 103-113.
[3] P. Mihók, G. Semanišin, Additive hereditary properties are uniquely factorizable, Czecho-Slovak Conference on Combinatorics and Graph Theory, Chudenice, 1997.