Localization of jumps of the point-distinguishing chromatic index of $K_{n,n}
Discussiones Mathematicae. Graph Theory, Tome 17 (1997) no. 2, pp. 243-251.

Voir la notice de l'article provenant de la source Library of Science

The point-distinguishing chromatic index of a graph represents the minimum number of colours in its edge colouring such that each vertex is distinguished by the set of colours of edges incident with it. Asymptotic information on jumps of the point-distinguishing chromatic index of K_n,n is found.
Keywords: Point-distinguishing chromatic index, colour set, complete equibipartite graph
@article{DMGT_1997_17_2_a2,
     author = {Hor\v{n}\'ak, Mirko and Sot\'ak, Roman},
     title = {Localization of jumps of the point-distinguishing chromatic index of $K_{n,n}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {243--251},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_1997_17_2_a2/}
}
TY  - JOUR
AU  - Horňák, Mirko
AU  - Soták, Roman
TI  - Localization of jumps of the point-distinguishing chromatic index of $K_{n,n}
JO  - Discussiones Mathematicae. Graph Theory
PY  - 1997
SP  - 243
EP  - 251
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_1997_17_2_a2/
LA  - en
ID  - DMGT_1997_17_2_a2
ER  - 
%0 Journal Article
%A Horňák, Mirko
%A Soták, Roman
%T Localization of jumps of the point-distinguishing chromatic index of $K_{n,n}
%J Discussiones Mathematicae. Graph Theory
%D 1997
%P 243-251
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_1997_17_2_a2/
%G en
%F DMGT_1997_17_2_a2
Horňák, Mirko; Soták, Roman. Localization of jumps of the point-distinguishing chromatic index of $K_{n,n}. Discussiones Mathematicae. Graph Theory, Tome 17 (1997) no. 2, pp. 243-251. http://geodesic.mathdoc.fr/item/DMGT_1997_17_2_a2/

[1] K. Al-Wahabi, R. Bari, F. Harary and D. Ullman, The edge-distinguishing chromatic number of paths and cycles, Annals of Discrete Math. 41 (1989) 17-22, doi: 10.1016/S0167-5060(08)70446-1.

[2] D.G. Beane, N.L. Biggs and B.J. Wilson, The growth rate of the harmonious chromatic number, J. Graph Theory 13 (1989) 291-298, doi: 10.1002/jgt.3190130304.

[3] A.C. Burris and R.H. Schelp, Vertex-distinguishing proper edge-colorings, J. Graph Theory (to appear).

[4] J. Cerný, M. Hor nák and R. Soták, Observability of a graph, Math. Slovaca 46 (1996) 21-31.

[5] O. Favaron and R.H. Schelp, Strong edge colorings of graphs, Discrete Math. (to appear).

[6] O. Frank, F. Harary and M. Plantholt, The line-distinguishing chromatic number of a graph, Ars Combin. 14 (1982) 241-252.

[7] F. Harary and M. Plantholt, The point-distinguishing chromatic index, in: F. Harary and J.S. Maybee, eds., Graphs and Applications (Wiley-Interscience, New York 1985) 147-162.

[8] J.E. Hopcroft and M.S. Krishnamoorthy, On the harmonious coloring of graphs, SIAM J. Alg. Discrete Meth. 4 (1983) 306-311, doi: 10.1137/0604032.

[9] M. Horňák and R. Soták, Observability of complete multipartite graphs with equipotent parts, Ars Combin. 41 (1995) 289-301.

[10] M. Horňák and R. Soták, The fifth jump of the point-distinguishing chromatic index of $K_{n,n}$, Ars Combin. 42 (1996) 233-242.

[11] M. Horňák and R. Soták, Asymptotic behaviour of the observability of Qₙ, Discrete Math. (to appear).

[12] Sin-Min Lee and J. Mitchem, An upper bound for the harmonious chromatic number of a graph, J. Graph Theory 12 (1987) 565-567.

[13] Z. Miller and D. Pritikin, The harmonious coloring number of a graph, Congr. Numer. 63 (1988) 213-228.

[14] N. Zagaglia Salvi, On the the point-distinguishing chromatic index of $K_{n,n}$, Ars Combin. 25 (B) (1988) 93-104.

[15] N. Zagaglia Salvi, On the value of the point-distinguishing chromatic index of $K_{n,n}$, Ars Combin. 29 (B) (1990) 235-244.