Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_1997_17_2_a1, author = {Mitchem, John and Morriss, Patrick and Schmeichel, Edward}, title = {On the cost chromatic number of outerplanar, planar, and line graphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {229--241}, publisher = {mathdoc}, volume = {17}, number = {2}, year = {1997}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_1997_17_2_a1/} }
TY - JOUR AU - Mitchem, John AU - Morriss, Patrick AU - Schmeichel, Edward TI - On the cost chromatic number of outerplanar, planar, and line graphs JO - Discussiones Mathematicae. Graph Theory PY - 1997 SP - 229 EP - 241 VL - 17 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_1997_17_2_a1/ LA - en ID - DMGT_1997_17_2_a1 ER -
%0 Journal Article %A Mitchem, John %A Morriss, Patrick %A Schmeichel, Edward %T On the cost chromatic number of outerplanar, planar, and line graphs %J Discussiones Mathematicae. Graph Theory %D 1997 %P 229-241 %V 17 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_1997_17_2_a1/ %G en %F DMGT_1997_17_2_a1
Mitchem, John; Morriss, Patrick; Schmeichel, Edward. On the cost chromatic number of outerplanar, planar, and line graphs. Discussiones Mathematicae. Graph Theory, Tome 17 (1997) no. 2, pp. 229-241. http://geodesic.mathdoc.fr/item/DMGT_1997_17_2_a1/
[1] P. Erdős, E. Kubicka and A. Schwenk, Graphs that Require Many Colors to Achieve Their Chromatic Sum, Congressus Numerantium 71 (1990) 17-28.
[2] S. Fiorini and R.J. Wilson, Edge-colorings of Graphs (Pitman, 1977).
[3] M. Gionfriddo, F. Harary and Zs. Tuza, The Color Cost of a Caterpillar, Discrete Mathematics, to appear.
[4] H. Izbicki, Zulässige Kantenfärbungen von Pseudo-Regulären Graphen mit Minimaler Kantenfarbenzahl, Monatsh. Math. 67 (1963) 25-31, doi: 10.1007/BF01300678.
[5] E. Kubicka, The Chromatic Sum of a Graph (Ph.D. Dissertation, Western Michigan University, 1989).
[6] E. Kubicka, Constraints on the Chromatic Sequence for Trees and Graphs, Congressus Numerantium 76 (1990) 219-230.
[7] E. Kubicka, G. Kubicka and D. Kountanis, Approximation Algorithms for the Chromatic Sum, in: Proceedings 1st Great Lakes Computer Science Conference, Michigan, October 1989 (Springer-Verlag LNCS 507, 15-21).
[8] E. Kubicka and A.J. Schwenk, An Introduction to Chromatic Sum, in: Proceedings 17th ACM Computer Science Conference 1989, 39-45.
[9] J. Mitchem and P. Morriss, On the Cost-Chromatic Number of Graphs, Discrete Mathematics 171 (1997) 201-211, doi: 10.1016/S0012-365X(96)00005-2.
[10] S. Nicoloso, M. Sarrafzadeh and X. Song, On the Sum Coloring Problem on Interval Graphs, Consiglió Nazionale Delle Ricerche, Instituto Di Analisi Dei Sistemi Ed Informatica, October 1994.
[11] K. Supowit, Finding a Maximum Planar Subset of a Set of Nets in a Channel, IEEE Transactions on Computer Aided Design, CAD-6 1 (1987) 93-94.
[12] C. Thomassen, P. Erdős, Y. Alavi, P.J. Malde and A.J. Schwenk, Tight Bounds on the Chromatic Sum of a Connected Graph, Journal of Graph Theory 13 (1989) 353-357, doi: 10.1002/jgt.3190130310.
[13] Zs. Tuza, Contractions and Minimal k-Colorability, Graphs and Combinatorics 6 (1990) 51-59, doi: 10.1007/BF01787480.
[14] Zs. Tuza, Problems and Results on Graph and Hypergraph Colorings, Le Matematiche 45 (1990) 219-238.
[15] Zs. Tuza, Chromatic Numbers and Orientations, February, 1993, unpublished manuscript.
[16] V.G. Vizing, On an Extimate of the Chromatic Class of a p-Graph, Diskret. Analiz 3 (1964) 25-30.
[17] D. West, Open Problems Section, The Siam Activity Group on Discrete Mathematics Newsletter 5 (2) (Winter 1994-95) 9.