On generalized list colourings of graphs
Discussiones Mathematicae. Graph Theory, Tome 17 (1997) no. 1, pp. 127-132.

Voir la notice de l'article provenant de la source Library of Science

Vizing [15] and Erdős et al. [8] independently introduce the idea of considering list-colouring and k-choosability. In the both papers the choosability version of Brooks' theorem [4] was proved but the choosability version of Gallai's theorem [9] was proved independently by Thomassen [14] and by Kostochka et al. [11]. In [3] some extensions of these two basic theorems to (,k)-choosability have been proved.
Keywords: hereditary property of graphs, list colouring, vertex partition number
@article{DMGT_1997_17_1_a8,
     author = {Borowiecki, Mieczys{\l}aw and Broere, Izak and Mih\'ok, Peter},
     title = {On generalized list colourings of graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {127--132},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_1997_17_1_a8/}
}
TY  - JOUR
AU  - Borowiecki, Mieczysław
AU  - Broere, Izak
AU  - Mihók, Peter
TI  - On generalized list colourings of graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 1997
SP  - 127
EP  - 132
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_1997_17_1_a8/
LA  - en
ID  - DMGT_1997_17_1_a8
ER  - 
%0 Journal Article
%A Borowiecki, Mieczysław
%A Broere, Izak
%A Mihók, Peter
%T On generalized list colourings of graphs
%J Discussiones Mathematicae. Graph Theory
%D 1997
%P 127-132
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_1997_17_1_a8/
%G en
%F DMGT_1997_17_1_a8
Borowiecki, Mieczysław; Broere, Izak; Mihók, Peter. On generalized list colourings of graphs. Discussiones Mathematicae. Graph Theory, Tome 17 (1997) no. 1, pp. 127-132. http://geodesic.mathdoc.fr/item/DMGT_1997_17_1_a8/

[1] M. Borowiecki, I. Broere, M. Frick, P. Mihók and G. Semanišin, A survey of hereditary properties of graphs, Discussiones Mathematicae Graph Theory 17 (1997) 5-50, doi: 10.7151/dmgt.1037.

[2] M. Borowiecki and P. Mihók, Hereditary Properties of Graphs, in: Advances in Graph Theory (Vishwa International Publications, 1991) 41-68.

[3] M. Borowiecki, E. Drgas-Burchardt, Generalized list colourings of graphs, Discussiones Math. Graph Theory 15 (1995) 185-193, doi: 10.7151/dmgt.1016.

[4] R.L. Brooks, On colouring the nodes of a network, Proc. Cambridge Phil. Soc. 37 (1941) 194-197, doi: 10.1017/S030500410002168X.

[5] G. Chartrand and H.H. Kronk, The point arboricity of planar graphs, J. London Math. Soc. 44 (1969) 612-616, doi: 10.1112/jlms/s1-44.1.612.

[6] G. Chartrand and L. Lesniak, Graphs and Digraphs, Second Edition, (Wadsworth Brooks/Cole, Monterey, 1986).

[7] G. Dirac, A property of 4-chromatic graphs and remarks on critical graphs, J. London Math. Soc. 27 (1952) 85-92, doi: 10.1112/jlms/s1-27.1.85.

[8] P. Erdős, A.L. Rubin and H. Taylor, Choosability in graphs, in: Proc. West Coast Conf. on Combin., Graph Theory and Computing, Congressus Numerantium XXVI (1979) 125-157.

[9] T. Gallai, Kritiche Graphen I, Publ. Math. Inst. Hung. Acad. Sci. 8 (1963) 373-395.

[10] T.R. Jensen and B. Toft, Graph Colouring Problems, (Wiley-Interscience Publications, New York, 1995).

[11] A.V. Kostochka, M. Stiebitz and B. Wirth, The colour theorems of Brooks and Gallai extended, Discrete Math. 162 (1996) 299-303, doi: 10.1016/0012-365X(95)00294-7.

[12] P. Mihók, An extension of Brooks' theorem, in: Proc. Fourth Czechoslovak Symp. on Combin., Combinatorics, Graphs, Complexity (Prague, 1991) 235-236.

[13] S.K. Stein, B-sets and planar graphs, Pacific J. Math. 37 (1971) 217-224.

[14] C. Thomassen, Color-critical graphs on a fixed surface (Report, Technical University of Denmark, Lyngby, 1995).

[15] V.G. Vizing, Colouring the vertices of a graph in prescribed colours, Diskret. Analiz 29 (1976) 3-10 (in Russian).