-bipartitions of minor hereditary properties
Discussiones Mathematicae. Graph Theory, Tome 17 (1997) no. 1, pp. 89-93
Voir la notice de l'article provenant de la source Library of Science
We prove that for any two minor hereditary properties ₁ and ₂, such that ₂ covers ₁, and for any graph G ∈ ₂ there is a ₁-bipartition of G. Some remarks on minimal reducible bounds are also included.
Keywords:
minor hereditary property of graphs, generalized colouring, bipartitions of graphs
@article{DMGT_1997_17_1_a4,
author = {Borowiecki, Piotr and Ivan\v{c}o, Jaroslav},
title = {-bipartitions of minor hereditary properties},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {89--93},
publisher = {mathdoc},
volume = {17},
number = {1},
year = {1997},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_1997_17_1_a4/}
}
Borowiecki, Piotr; Ivančo, Jaroslav. -bipartitions of minor hereditary properties. Discussiones Mathematicae. Graph Theory, Tome 17 (1997) no. 1, pp. 89-93. http://geodesic.mathdoc.fr/item/DMGT_1997_17_1_a4/