Clique packings and clique partitions of graphs without odd chordless cycles
Discussiones Mathematicae. Graph Theory, Tome 16 (1996) no. 2, pp. 143-149
Cet article a éte moissonné depuis la source Library of Science
In this paper we consider partitions (resp. packings) of graphs without odd chordless cycles into cliques of order at least 2. We give a structure theorem, min-max results and characterization theorems for this kind of partitions and packings.
Keywords:
clique partition, matching, min-max theorems
@article{DMGT_1996_16_2_a4,
author = {Lonc, Zbigniew},
title = {Clique packings and clique partitions of graphs without odd chordless cycles},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {143--149},
year = {1996},
volume = {16},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_1996_16_2_a4/}
}
Lonc, Zbigniew. Clique packings and clique partitions of graphs without odd chordless cycles. Discussiones Mathematicae. Graph Theory, Tome 16 (1996) no. 2, pp. 143-149. http://geodesic.mathdoc.fr/item/DMGT_1996_16_2_a4/
[1] G. Cornuéjols, D. Hartvigsen and W. Pulleyblank, Packings subgraphs in a graph, Operations Research Letters 1 (1982) 139-143, doi: 10.1016/0167-6377(82)90016-5.
[2] P. Hell and D.G. Kirkpatrick, On the complexity of general graph factor problems, SIAM Journal of Computing 12 (1983) 601-609, doi: 10.1137/0212040.
[3] P. Hell and D.G. Kirkpatrick, Packing by cliques and by finite families of graphs, Discrete Math. 49 (1984) 45-59, doi: 10.1016/0012-365X(84)90150-X.
[4] Z. Lonc, Chain partitions of ordered sets, Order 11 (1994) 343-351, doi: 10.1007/BF01108766.
[5] L. Lovász and M.D. Plummer, Matching Theory (North Holland, Amsterdam, 1986).