Placing bipartite graphs of small size II
Discussiones Mathematicae. Graph Theory, Tome 16 (1996) no. 2, pp. 93-110.

Voir la notice de l'article provenant de la source Library of Science

In this paper we give all pairs of non mutually placeable (p,q)-bipartite graphs G and H such that 2 ≤ p ≤ q, e(H) ≤ p and e(G)+e(H) ≤ 2p+q-1.
Keywords: packing of graphs, bipartite graph
@article{DMGT_1996_16_2_a0,
     author = {Orchel, Beata},
     title = {Placing bipartite graphs of small size {II}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {93--110},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_1996_16_2_a0/}
}
TY  - JOUR
AU  - Orchel, Beata
TI  - Placing bipartite graphs of small size II
JO  - Discussiones Mathematicae. Graph Theory
PY  - 1996
SP  - 93
EP  - 110
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_1996_16_2_a0/
LA  - en
ID  - DMGT_1996_16_2_a0
ER  - 
%0 Journal Article
%A Orchel, Beata
%T Placing bipartite graphs of small size II
%J Discussiones Mathematicae. Graph Theory
%D 1996
%P 93-110
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_1996_16_2_a0/
%G en
%F DMGT_1996_16_2_a0
Orchel, Beata. Placing bipartite graphs of small size II. Discussiones Mathematicae. Graph Theory, Tome 16 (1996) no. 2, pp. 93-110. http://geodesic.mathdoc.fr/item/DMGT_1996_16_2_a0/

[1] C. Berge, Graphs (North-Holland Mathematical Library 6, Amsterdam, New York, Oxford 1985).

[2] B. Bollobás, S.E. Eldridge, Packing of graphs and applications to computational complexity, J. Combin. Theory (B) 25 (1978) 105-124, doi: 10.1016/0095-8956(78)90030-8.

[3] A.P. Catlin, Subgraphs of graphs 1, Discrete Math. 10 (1974) 225-233, doi: 10.1016/0012-365X(74)90119-8.

[4] J.-L. Fouquet and A.P. Wojda, Mutual placement of bipartite graphs, Discrete Math. 121 (1993) 85-92, doi: 10.1016/0012-365X(93)90540-A.

[5] G. Frobenius, Über zerlegbare Determinanten, Sitzungsber, König. Preuss. Akad. Wiss. XVIII (1917) 274-277.

[6] P. Hall, On representatives of subsets, J. London Math. Soc. 10 (1935) 26-30, doi: 10.1112/jlms/s1-10.37.26.

[7] P. Hajnal and M. Szegedy, On packing bipartite graphs, Combinatorica 12 (1992) 295-301, doi: 10.1007/BF01285818.

[8] B. Orchel, Placing bipartite graphs of small size I, Folia Scientiarum Universitatis Technicae Resoviensis, 118 (1993) 51-58.

[9] R. Rado, A theorem on general measure functions, Proc. London Math. Soc. 44 (2) (1938) 61-91, doi: 10.1112/plms/s2-44.1.61.

[10] S.K. Teo and H.P. Yap, Packing two graphs of order n having total size at most 2n-2, Graphs and Combinatorics 6 (1990) 197-205, doi: 10.1007/BF01787731.

[11] A.P. Wojda and P. Vaderlind, Packing bipartite graphs, to appear.