Pancyclism and small cycles in graphs
Discussiones Mathematicae. Graph Theory, Tome 16 (1996) no. 1, pp. 27-40.

Voir la notice de l'article provenant de la source Library of Science

We first show that if a graph G of order n contains a hamiltonian path connecting two nonadjacent vertices u and v such that d(u)+d(v) ≥ n, then G is pancyclic. By using this result, we prove that if G is hamiltonian with order n ≥ 20 and if G has two nonadjacent vertices u and v such that d(u)+d(v) ≥ n+z, where z = 0 when n is odd and z = 1 otherwise, then G contains a cycle of length m for each 3 ≤ m ≤ max (d_C(u,v)+1, [(n+19)/13]), d_C(u,v) being the distance of u and v on a hamiltonian cycle of G.
Keywords: cycle, hamiltonian, pancyclic
@article{DMGT_1996_16_1_a2,
     author = {Faudree, Ralph and Favaron, Odile and Flandrin, Evelynei and Li, Hao},
     title = {Pancyclism and small cycles in graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {27--40},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_1996_16_1_a2/}
}
TY  - JOUR
AU  - Faudree, Ralph
AU  - Favaron, Odile
AU  - Flandrin, Evelynei
AU  - Li, Hao
TI  - Pancyclism and small cycles in graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 1996
SP  - 27
EP  - 40
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_1996_16_1_a2/
LA  - en
ID  - DMGT_1996_16_1_a2
ER  - 
%0 Journal Article
%A Faudree, Ralph
%A Favaron, Odile
%A Flandrin, Evelynei
%A Li, Hao
%T Pancyclism and small cycles in graphs
%J Discussiones Mathematicae. Graph Theory
%D 1996
%P 27-40
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_1996_16_1_a2/
%G en
%F DMGT_1996_16_1_a2
Faudree, Ralph; Favaron, Odile; Flandrin, Evelynei; Li, Hao. Pancyclism and small cycles in graphs. Discussiones Mathematicae. Graph Theory, Tome 16 (1996) no. 1, pp. 27-40. http://geodesic.mathdoc.fr/item/DMGT_1996_16_1_a2/

[1] D. Amar, E. Flandrin, I. Fournier and A. Germa, Pancyclism in hamiltonian graphs, Discrete Math. 89 (1991) 111-131, doi: 10.1016/0012-365X(91)90361-5.

[2] A. Benhocine and A. P. Wojda, The Geng-Hua Fan conditions for pancyclic or hamilton-connected graphs, J. Combin. Theory (B) 42 (1987) 167-180, doi: 10.1016/0095-8956(87)90038-4.

[3] J.A. Bondy, Pancyclic graphs. I., J. Combin. Theory 11 (1971) 80-84, doi: 10.1016/0095-8956(71)90016-5.

[4] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (Macmillan Press, 1976).

[5] R. Faudree, O. Favaron, E. Flandrin and H. Li, The complete closure of a graph, J. Graph Theory 17 (1993) 481-494, doi: 10.1002/jgt.3190170406.

[6] E.F. Schmeichel and S.L. Hakimi, Pancyclic graphs and a conjecture of Bondy and Chvátal, J. Combin. Theory (B) 17 (1974) 22-34, doi: 10.1016/0095-8956(74)90043-4.

[7] E.F. Schmeichel and S.L. Hakimi, A cycle structure theorem for hamiltonian graphs, J. Combin. Theory (B) 45 (1988) 99-107, doi: 10.1016/0095-8956(88)90058-5.

[8] R.H. Shi, The Ore-type conditions on pancyclism of hamiltonian graphs, personal communication.