Pancyclism and small cycles in graphs
Discussiones Mathematicae. Graph Theory, Tome 16 (1996) no. 1, pp. 27-40
Cet article a éte moissonné depuis la source Library of Science
We first show that if a graph G of order n contains a hamiltonian path connecting two nonadjacent vertices u and v such that d(u)+d(v) ≥ n, then G is pancyclic. By using this result, we prove that if G is hamiltonian with order n ≥ 20 and if G has two nonadjacent vertices u and v such that d(u)+d(v) ≥ n+z, where z = 0 when n is odd and z = 1 otherwise, then G contains a cycle of length m for each 3 ≤ m ≤ max (d_C(u,v)+1, [(n+19)/13]), d_C(u,v) being the distance of u and v on a hamiltonian cycle of G.
Keywords:
cycle, hamiltonian, pancyclic
@article{DMGT_1996_16_1_a2,
author = {Faudree, Ralph and Favaron, Odile and Flandrin, Evelynei and Li, Hao},
title = {Pancyclism and small cycles in graphs},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {27--40},
year = {1996},
publisher = {mathdoc},
volume = {16},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_1996_16_1_a2/}
}
TY - JOUR AU - Faudree, Ralph AU - Favaron, Odile AU - Flandrin, Evelynei AU - Li, Hao TI - Pancyclism and small cycles in graphs JO - Discussiones Mathematicae. Graph Theory PY - 1996 SP - 27 EP - 40 VL - 16 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_1996_16_1_a2/ LA - en ID - DMGT_1996_16_1_a2 ER -
Faudree, Ralph; Favaron, Odile; Flandrin, Evelynei; Li, Hao. Pancyclism and small cycles in graphs. Discussiones Mathematicae. Graph Theory, Tome 16 (1996) no. 1, pp. 27-40. http://geodesic.mathdoc.fr/item/DMGT_1996_16_1_a2/