Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_1996_16_1_a2, author = {Faudree, Ralph and Favaron, Odile and Flandrin, Evelynei and Li, Hao}, title = {Pancyclism and small cycles in graphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {27--40}, publisher = {mathdoc}, volume = {16}, number = {1}, year = {1996}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_1996_16_1_a2/} }
TY - JOUR AU - Faudree, Ralph AU - Favaron, Odile AU - Flandrin, Evelynei AU - Li, Hao TI - Pancyclism and small cycles in graphs JO - Discussiones Mathematicae. Graph Theory PY - 1996 SP - 27 EP - 40 VL - 16 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_1996_16_1_a2/ LA - en ID - DMGT_1996_16_1_a2 ER -
Faudree, Ralph; Favaron, Odile; Flandrin, Evelynei; Li, Hao. Pancyclism and small cycles in graphs. Discussiones Mathematicae. Graph Theory, Tome 16 (1996) no. 1, pp. 27-40. http://geodesic.mathdoc.fr/item/DMGT_1996_16_1_a2/
[1] D. Amar, E. Flandrin, I. Fournier and A. Germa, Pancyclism in hamiltonian graphs, Discrete Math. 89 (1991) 111-131, doi: 10.1016/0012-365X(91)90361-5.
[2] A. Benhocine and A. P. Wojda, The Geng-Hua Fan conditions for pancyclic or hamilton-connected graphs, J. Combin. Theory (B) 42 (1987) 167-180, doi: 10.1016/0095-8956(87)90038-4.
[3] J.A. Bondy, Pancyclic graphs. I., J. Combin. Theory 11 (1971) 80-84, doi: 10.1016/0095-8956(71)90016-5.
[4] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (Macmillan Press, 1976).
[5] R. Faudree, O. Favaron, E. Flandrin and H. Li, The complete closure of a graph, J. Graph Theory 17 (1993) 481-494, doi: 10.1002/jgt.3190170406.
[6] E.F. Schmeichel and S.L. Hakimi, Pancyclic graphs and a conjecture of Bondy and Chvátal, J. Combin. Theory (B) 17 (1974) 22-34, doi: 10.1016/0095-8956(74)90043-4.
[7] E.F. Schmeichel and S.L. Hakimi, A cycle structure theorem for hamiltonian graphs, J. Combin. Theory (B) 45 (1988) 99-107, doi: 10.1016/0095-8956(88)90058-5.
[8] R.H. Shi, The Ore-type conditions on pancyclism of hamiltonian graphs, personal communication.