Radii and centers in iterated line digraphs
Discussiones Mathematicae. Graph Theory, Tome 16 (1996) no. 1, pp. 17-26.

Voir la notice de l'article provenant de la source Library of Science

We show that the out-radius and the radius grow linearly, or "almost" linearly, in iterated line digraphs. Further, iterated line digraphs with a prescribed out-center, or a center, are constructed. It is shown that not every line digraph is admissible as an out-center of line digraph.
Keywords: center, digraph, line digraph, radius
@article{DMGT_1996_16_1_a1,
     author = {Knor, Martin and Niepel, L'udov{\'\i}t},
     title = {Radii and centers in iterated line digraphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {17--26},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_1996_16_1_a1/}
}
TY  - JOUR
AU  - Knor, Martin
AU  - Niepel, L'udovít
TI  - Radii and centers in iterated line digraphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 1996
SP  - 17
EP  - 26
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_1996_16_1_a1/
LA  - en
ID  - DMGT_1996_16_1_a1
ER  - 
%0 Journal Article
%A Knor, Martin
%A Niepel, L'udovít
%T Radii and centers in iterated line digraphs
%J Discussiones Mathematicae. Graph Theory
%D 1996
%P 17-26
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_1996_16_1_a1/
%G en
%F DMGT_1996_16_1_a1
Knor, Martin; Niepel, L'udovít. Radii and centers in iterated line digraphs. Discussiones Mathematicae. Graph Theory, Tome 16 (1996) no. 1, pp. 17-26. http://geodesic.mathdoc.fr/item/DMGT_1996_16_1_a1/

[1] M. Aigner, On the linegraph of a directed graph, Math. Z. 102 (1967) 56-61, doi: 10.1007/BF01110285.

[2] L.W. Beineke and R.J. Wilson, Selected Topics in Graph Theory (Academic Press, London, 1978).

[3] F. Buckley and F. Harary, Distance in Graphs (Addison-Wesley, Reading, 1990).

[4] M.A. Fiol, J.L.A. Yebra and I. Alegre, Line digraph iterations and the (d,k) digraph problem, IEEE Trans. Comput. C-33 (1984) 400-403, doi: 10.1109/TC.1984.1676455.

[5] M. Knor, L'. Niepel and L'. Soltés, Centers in Iterated Line Graphs, Acta Math. Univ. Comenianae LXI, 2 (1992) 237-241.

[6] M. Knor, L'. Niepel and L'. Soltés, Distances in Iterated Line Graphs, Ars Combin. (to appear).