Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_1996_16_1_a0, author = {Galeana-S\'anchez, H. and Neumann-Lara, V.}, title = {KP-digraphs and {CKI-digraphs} satisfying the {k-Meyniel's} condition}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {5--16}, publisher = {mathdoc}, volume = {16}, number = {1}, year = {1996}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_1996_16_1_a0/} }
TY - JOUR AU - Galeana-Sánchez, H. AU - Neumann-Lara, V. TI - KP-digraphs and CKI-digraphs satisfying the k-Meyniel's condition JO - Discussiones Mathematicae. Graph Theory PY - 1996 SP - 5 EP - 16 VL - 16 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_1996_16_1_a0/ LA - en ID - DMGT_1996_16_1_a0 ER -
Galeana-Sánchez, H.; Neumann-Lara, V. KP-digraphs and CKI-digraphs satisfying the k-Meyniel's condition. Discussiones Mathematicae. Graph Theory, Tome 16 (1996) no. 1, pp. 5-16. http://geodesic.mathdoc.fr/item/DMGT_1996_16_1_a0/
[1] C. Berge, Graphs (North-Holland, Amsterdam, 1985).
[2] P. Duchet and H. Meyniel, A note on kernel-critical digraphs, Discrete Math. 33 (1981) 103-105, doi: 10.1016/0012-365X(81)90264-8.
[3] P. Duchet and H. Meyniel, Une generalization du theoreme de Richarson sur l'existence de noyoux dans les graphes orientes, Discrete Math. 43 (1983) 21-27, doi: 10.1016/0012-365X(83)90017-1.
[4] P. Duchet, A suffiecient condition for a digraph to be kernel-perfect, J. Graph Theory 11 (1987) 81-81, doi: 10.1002/jgt.3190110112.
[5] H. Galeana-Sánchez and V. Neumann-Lara, On kernels and semikernels of digraphs, Discrete Math. 48 (1984) 67-76, doi: 10.1016/0012-365X(84)90131-6.
[6] H. Galeana-Sánchez and V. Neumann-Lara, On kernel-perfect critical digraphs, Discrete Math. 59 (1986) 257-265, doi: 10.1016/0012-365X(86)90172-X.
[7] H. Galeana-Sánchez and V. Neumann-Lara, Extending kernel perfect digraphs to kernel perfect critical digraphs, Discrete Math. 94 (1991) 181-187, doi: 10.1016/0012-365X(91)90023-U.
[8] H. Jacob, Etude Theorique du Noyau d'un graphe, These, Universite Pierre et Marie Curie, Paris VI, 1979.
[9] V. Neumann-Lara, Seminúcleos de una digráfica, Anales del Instituto de Matemáticas 11 (1971) UNAM.