KP-digraphs and CKI-digraphs satisfying the k-Meyniel's condition
Discussiones Mathematicae. Graph Theory, Tome 16 (1996) no. 1, pp. 5-16.

Voir la notice de l'article provenant de la source Library of Science

A digraph D is said to satisfy the k-Meyniel’s condition if each odd directed cycle of D has at least k diagonals. The study of the k-Meyniel’s condition has been a source of many interesting problems, questions and results in the development of Kernel Theory. In this paper we present a method to construct a large variety of kernel-perfect (resp. critical kernel-imperfect) digraphs which satisfy the k-Meyniel’s condition.
Keywords: digraph, kernel, independent set of vertices, absorbing set of vertices, kernel-perfect digraph, critical-kernel-imperfect digraph, τ-system, τ₁-system, indepedent kernel modulo Q, co-rooted tree, τ-construction, τ₁-construction
@article{DMGT_1996_16_1_a0,
     author = {Galeana-S\'anchez, H. and Neumann-Lara, V.},
     title = {KP-digraphs and {CKI-digraphs} satisfying the {k-Meyniel's} condition},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {5--16},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_1996_16_1_a0/}
}
TY  - JOUR
AU  - Galeana-Sánchez, H.
AU  - Neumann-Lara, V.
TI  - KP-digraphs and CKI-digraphs satisfying the k-Meyniel's condition
JO  - Discussiones Mathematicae. Graph Theory
PY  - 1996
SP  - 5
EP  - 16
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_1996_16_1_a0/
LA  - en
ID  - DMGT_1996_16_1_a0
ER  - 
%0 Journal Article
%A Galeana-Sánchez, H.
%A Neumann-Lara, V.
%T KP-digraphs and CKI-digraphs satisfying the k-Meyniel's condition
%J Discussiones Mathematicae. Graph Theory
%D 1996
%P 5-16
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_1996_16_1_a0/
%G en
%F DMGT_1996_16_1_a0
Galeana-Sánchez, H.; Neumann-Lara, V. KP-digraphs and CKI-digraphs satisfying the k-Meyniel's condition. Discussiones Mathematicae. Graph Theory, Tome 16 (1996) no. 1, pp. 5-16. http://geodesic.mathdoc.fr/item/DMGT_1996_16_1_a0/

[1] C. Berge, Graphs (North-Holland, Amsterdam, 1985).

[2] P. Duchet and H. Meyniel, A note on kernel-critical digraphs, Discrete Math. 33 (1981) 103-105, doi: 10.1016/0012-365X(81)90264-8.

[3] P. Duchet and H. Meyniel, Une generalization du theoreme de Richarson sur l'existence de noyoux dans les graphes orientes, Discrete Math. 43 (1983) 21-27, doi: 10.1016/0012-365X(83)90017-1.

[4] P. Duchet, A suffiecient condition for a digraph to be kernel-perfect, J. Graph Theory 11 (1987) 81-81, doi: 10.1002/jgt.3190110112.

[5] H. Galeana-Sánchez and V. Neumann-Lara, On kernels and semikernels of digraphs, Discrete Math. 48 (1984) 67-76, doi: 10.1016/0012-365X(84)90131-6.

[6] H. Galeana-Sánchez and V. Neumann-Lara, On kernel-perfect critical digraphs, Discrete Math. 59 (1986) 257-265, doi: 10.1016/0012-365X(86)90172-X.

[7] H. Galeana-Sánchez and V. Neumann-Lara, Extending kernel perfect digraphs to kernel perfect critical digraphs, Discrete Math. 94 (1991) 181-187, doi: 10.1016/0012-365X(91)90023-U.

[8] H. Jacob, Etude Theorique du Noyau d'un graphe, These, Universite Pierre et Marie Curie, Paris VI, 1979.

[9] V. Neumann-Lara, Seminúcleos de una digráfica, Anales del Instituto de Matemáticas 11 (1971) UNAM.