On the factorization of reducible properties of graphs into irreducible factors
Discussiones Mathematicae. Graph Theory, Tome 15 (1995) no. 2, pp. 195-203.

Voir la notice de l'article provenant de la source Library of Science

A hereditary property R of graphs is said to be reducible if there exist hereditary properties P₁,P₂ such that G ∈ R if and only if the set of vertices of G can be partitioned into V(G) = V₁∪V₂ so that 〈V₁〉 ∈ P₁ and 〈V₂〉 ∈ P₂. The problem of the factorization of reducible properties into irreducible factors is investigated.
Keywords: hereditary property of graphs, additivity, reducibility, vertex partition
@article{DMGT_1995_15_2_a6,
     author = {Mih\'ok, P. and Vasky, R.},
     title = {On the factorization of reducible properties of graphs into irreducible factors},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {195--203},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_1995_15_2_a6/}
}
TY  - JOUR
AU  - Mihók, P.
AU  - Vasky, R.
TI  - On the factorization of reducible properties of graphs into irreducible factors
JO  - Discussiones Mathematicae. Graph Theory
PY  - 1995
SP  - 195
EP  - 203
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_1995_15_2_a6/
LA  - en
ID  - DMGT_1995_15_2_a6
ER  - 
%0 Journal Article
%A Mihók, P.
%A Vasky, R.
%T On the factorization of reducible properties of graphs into irreducible factors
%J Discussiones Mathematicae. Graph Theory
%D 1995
%P 195-203
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_1995_15_2_a6/
%G en
%F DMGT_1995_15_2_a6
Mihók, P.; Vasky, R. On the factorization of reducible properties of graphs into irreducible factors. Discussiones Mathematicae. Graph Theory, Tome 15 (1995) no. 2, pp. 195-203. http://geodesic.mathdoc.fr/item/DMGT_1995_15_2_a6/

[1] M. Borowiecki, P. Mihók, Hereditary properties of graphs, in: V.R. Kulli, ed., Advances in Graph Theory (Vishwa International Publication, 1991) 42-69.

[2] T.R. Jensen and B. Toft, Graph Colouring Problems (Wiley-Interscience Publications, New York, 1995).

[3] P. Mihók, G. Semaniin, Reducible properties of graphs, Discussiones Math.- Graph Theory 15 (1995) 11-18, doi: 10.7151/dmgt.1002.

[4] P. Mihók, Additive hereditary properties and uniquely partitionable graphs, in: Graphs, Hypergraphs and Matroids (Zielona Góra, 1985) 49-58.

[5] P. Mihók, On the minimal reducible bound for outerplanar and planar graphs (to appear).