On the factorization of reducible properties of graphs into irreducible factors
Discussiones Mathematicae. Graph Theory, Tome 15 (1995) no. 2, pp. 195-203
Cet article a éte moissonné depuis la source Library of Science
A hereditary property R of graphs is said to be reducible if there exist hereditary properties P₁,P₂ such that G ∈ R if and only if the set of vertices of G can be partitioned into V(G) = V₁∪V₂ so that 〈V₁〉 ∈ P₁ and 〈V₂〉 ∈ P₂. The problem of the factorization of reducible properties into irreducible factors is investigated.
Keywords:
hereditary property of graphs, additivity, reducibility, vertex partition
@article{DMGT_1995_15_2_a6,
author = {Mih\'ok, P. and Vasky, R.},
title = {On the factorization of reducible properties of graphs into irreducible factors},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {195--203},
year = {1995},
volume = {15},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_1995_15_2_a6/}
}
TY - JOUR AU - Mihók, P. AU - Vasky, R. TI - On the factorization of reducible properties of graphs into irreducible factors JO - Discussiones Mathematicae. Graph Theory PY - 1995 SP - 195 EP - 203 VL - 15 IS - 2 UR - http://geodesic.mathdoc.fr/item/DMGT_1995_15_2_a6/ LA - en ID - DMGT_1995_15_2_a6 ER -
Mihók, P.; Vasky, R. On the factorization of reducible properties of graphs into irreducible factors. Discussiones Mathematicae. Graph Theory, Tome 15 (1995) no. 2, pp. 195-203. http://geodesic.mathdoc.fr/item/DMGT_1995_15_2_a6/
[1] M. Borowiecki, P. Mihók, Hereditary properties of graphs, in: V.R. Kulli, ed., Advances in Graph Theory (Vishwa International Publication, 1991) 42-69.
[2] T.R. Jensen and B. Toft, Graph Colouring Problems (Wiley-Interscience Publications, New York, 1995).
[3] P. Mihók, G. Semaniin, Reducible properties of graphs, Discussiones Math.- Graph Theory 15 (1995) 11-18, doi: 10.7151/dmgt.1002.
[4] P. Mihók, Additive hereditary properties and uniquely partitionable graphs, in: Graphs, Hypergraphs and Matroids (Zielona Góra, 1985) 49-58.
[5] P. Mihók, On the minimal reducible bound for outerplanar and planar graphs (to appear).