Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_1995_15_2_a2, author = {Gopalakrishnan, C. and Pandu Rangan, C.}, title = {A linear algorithm for the two paths problem on permutation graphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {147--166}, publisher = {mathdoc}, volume = {15}, number = {2}, year = {1995}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_1995_15_2_a2/} }
TY - JOUR AU - Gopalakrishnan, C. AU - Pandu Rangan, C. TI - A linear algorithm for the two paths problem on permutation graphs JO - Discussiones Mathematicae. Graph Theory PY - 1995 SP - 147 EP - 166 VL - 15 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_1995_15_2_a2/ LA - en ID - DMGT_1995_15_2_a2 ER -
Gopalakrishnan, C.; Pandu Rangan, C. A linear algorithm for the two paths problem on permutation graphs. Discussiones Mathematicae. Graph Theory, Tome 15 (1995) no. 2, pp. 147-166. http://geodesic.mathdoc.fr/item/DMGT_1995_15_2_a2/
[1] [BM 76] J.A. Bondy, U.S.R. Murthy, Graph Theory with Applications (Academic Press, 1976).
[2] [ET 75] S. Even, R.E. Tarjan, Network flow and testing graph connectivity, SIAM J. Comput. 4 (1975) 507-518, doi: 10.1137/0204043.
[3] [HT 74] J.E. Hopcroft, R.E. Tarjan, Efficient planarity testing, J. ACM 21 (1974) 549-568, doi: 10.1145/321850.321852.
[4] [G 80] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs (Academic Press, 1980).
[5] [MT 89] B. Mishra, R.E. Tarjan, A linear time algorithm for finding an ambitus (Technical Report 464, August 1989, New York University).
[6] [O 80] T. Ohtsuki, The two disjoint path problem and wire routing design, In: Proc. of the 17th Symp. of Res. Inst. of Electrical Comm. (1980) 257-267.
[7] [PS 78] Y. Perl, Y. Shiloach, Finding two disjoint paths between two pairs of vertices in a graph, J. of the ACM 25 (1978) 1-9, doi: 10.1145/322047.322048.
[8] [RP] P.B. Ramprasad, C. Pandu Rangan, A new linear time algorithm for the two path problem on planar graphs (Technical Report, Department of Computer Science, IIT, Madras, 1991).
[9] [S 80] Y. Shiloach, A polynomial solution to the undirected two paths problem, J. of the ACM 27 (1980) 445-456, doi: 10.1145/322203.322207.
[10] [S 83] J. Spinrad, Transitive orientation in O(n²) time, In: Proc. of Fifteenth ACM Symposium on the Theory of Computing (1983) 457-466, doi: 10.1145/800061.808777.
[11] [KPS 91] S.V. Krishnan, C. Pandu Rangan, S. Seshadri, A. Schwill, Two Disjoint Paths in Chordal graphs (Technical Report, 2/91, February 1991, University of Oldenburg, Germany).