A linear algorithm for the two paths problem on permutation graphs
Discussiones Mathematicae. Graph Theory, Tome 15 (1995) no. 2, pp. 147-166.

Voir la notice de l'article provenant de la source Library of Science

The 'two paths problem' is stated as follows. Given an undirected graph G = (V,E) and vertices s₁,t₁;s₂,t₂, the problem is to determine whether or not G admits two vertex-disjoint paths P₁ and P₂ connecting s₁ with t₁ and s₂ with t₂ respectively. In this paper we give a linear (O(|V|+ |E|)) algorithm to solve the above problem on a permutation graph.
Keywords: algorithm, bridge, connectivity, disjoint paths, permutation graph, two paths problem
@article{DMGT_1995_15_2_a2,
     author = {Gopalakrishnan, C. and Pandu Rangan, C.},
     title = {A linear algorithm for the two paths problem on permutation graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {147--166},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_1995_15_2_a2/}
}
TY  - JOUR
AU  - Gopalakrishnan, C.
AU  - Pandu Rangan, C.
TI  - A linear algorithm for the two paths problem on permutation graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 1995
SP  - 147
EP  - 166
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_1995_15_2_a2/
LA  - en
ID  - DMGT_1995_15_2_a2
ER  - 
%0 Journal Article
%A Gopalakrishnan, C.
%A Pandu Rangan, C.
%T A linear algorithm for the two paths problem on permutation graphs
%J Discussiones Mathematicae. Graph Theory
%D 1995
%P 147-166
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_1995_15_2_a2/
%G en
%F DMGT_1995_15_2_a2
Gopalakrishnan, C.; Pandu Rangan, C. A linear algorithm for the two paths problem on permutation graphs. Discussiones Mathematicae. Graph Theory, Tome 15 (1995) no. 2, pp. 147-166. http://geodesic.mathdoc.fr/item/DMGT_1995_15_2_a2/

[1] [BM 76] J.A. Bondy, U.S.R. Murthy, Graph Theory with Applications (Academic Press, 1976).

[2] [ET 75] S. Even, R.E. Tarjan, Network flow and testing graph connectivity, SIAM J. Comput. 4 (1975) 507-518, doi: 10.1137/0204043.

[3] [HT 74] J.E. Hopcroft, R.E. Tarjan, Efficient planarity testing, J. ACM 21 (1974) 549-568, doi: 10.1145/321850.321852.

[4] [G 80] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs (Academic Press, 1980).

[5] [MT 89] B. Mishra, R.E. Tarjan, A linear time algorithm for finding an ambitus (Technical Report 464, August 1989, New York University).

[6] [O 80] T. Ohtsuki, The two disjoint path problem and wire routing design, In: Proc. of the 17th Symp. of Res. Inst. of Electrical Comm. (1980) 257-267.

[7] [PS 78] Y. Perl, Y. Shiloach, Finding two disjoint paths between two pairs of vertices in a graph, J. of the ACM 25 (1978) 1-9, doi: 10.1145/322047.322048.

[8] [RP] P.B. Ramprasad, C. Pandu Rangan, A new linear time algorithm for the two path problem on planar graphs (Technical Report, Department of Computer Science, IIT, Madras, 1991).

[9] [S 80] Y. Shiloach, A polynomial solution to the undirected two paths problem, J. of the ACM 27 (1980) 445-456, doi: 10.1145/322203.322207.

[10] [S 83] J. Spinrad, Transitive orientation in O(n²) time, In: Proc. of Fifteenth ACM Symposium on the Theory of Computing (1983) 457-466, doi: 10.1145/800061.808777.

[11] [KPS 91] S.V. Krishnan, C. Pandu Rangan, S. Seshadri, A. Schwill, Two Disjoint Paths in Chordal graphs (Technical Report, 2/91, February 1991, University of Oldenburg, Germany).