Spanning caterpillars with bounded diameter
Discussiones Mathematicae. Graph Theory, Tome 15 (1995) no. 2, pp. 111-118
Cet article a éte moissonné depuis la source Library of Science
A caterpillar is a tree with the property that the vertices of degree at least 2 induce a path. We show that for every graph G of order n, either G or G̅ has a spanning caterpillar of diameter at most 2 log n. Furthermore, we show that if G is a graph of diameter 2 (diameter 3), then G contains a spanning caterpillar of diameter at most cn^3/4 (at most n).
Keywords:
distance, spaning tree
@article{DMGT_1995_15_2_a0,
author = {Faudree, Ralph and Gould, Ronald and Jacobson, Michael and Lesniak, Linda},
title = {Spanning caterpillars with bounded diameter},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {111--118},
year = {1995},
volume = {15},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_1995_15_2_a0/}
}
TY - JOUR AU - Faudree, Ralph AU - Gould, Ronald AU - Jacobson, Michael AU - Lesniak, Linda TI - Spanning caterpillars with bounded diameter JO - Discussiones Mathematicae. Graph Theory PY - 1995 SP - 111 EP - 118 VL - 15 IS - 2 UR - http://geodesic.mathdoc.fr/item/DMGT_1995_15_2_a0/ LA - en ID - DMGT_1995_15_2_a0 ER -
Faudree, Ralph; Gould, Ronald; Jacobson, Michael; Lesniak, Linda. Spanning caterpillars with bounded diameter. Discussiones Mathematicae. Graph Theory, Tome 15 (1995) no. 2, pp. 111-118. http://geodesic.mathdoc.fr/item/DMGT_1995_15_2_a0/
[1] A. Bialostocki, P. Dierker and B. Voxman, On monochromatic spanning trees of the complete graph, Preprint.
[2] S. Burr, Either a graph or its complement contains a spanning broom, Preprint.
[3] P. Erdős, R. Faudree, A. Gyárfás, R. Schelp, Domination in colored complete graphs, J. Graph Theory 13 (1989) 713-718, doi: 10.1002/jgt.3190130607.