Some maximum multigraphs and edge/vertex distance colourings
Discussiones Mathematicae. Graph Theory, Tome 15 (1995) no. 1, pp. 89-106.

Voir la notice de l'article provenant de la source Library of Science

Shannon-Vizing-type problems concerning the upper bound for a distance chromatic index of multigraphs G in terms of the maximum degree Δ(G) are studied. Conjectures generalizing those related to the strong chromatic index are presented. The chromatic d-index and chromatic d-number of paths, cycles, trees and some hypercubes are determined. Among hypercubes, however, the exact order of their growth is found.
Keywords: (strong) chromatic index, chromatic number, matching, hypercube, error-correcting code, asymptotics
@article{DMGT_1995_15_1_a9,
     author = {Skupie\'n, Zdzis{\l}aw},
     title = {Some maximum multigraphs and edge/vertex distance colourings},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {89--106},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_1995_15_1_a9/}
}
TY  - JOUR
AU  - Skupień, Zdzisław
TI  - Some maximum multigraphs and edge/vertex distance colourings
JO  - Discussiones Mathematicae. Graph Theory
PY  - 1995
SP  - 89
EP  - 106
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_1995_15_1_a9/
LA  - en
ID  - DMGT_1995_15_1_a9
ER  - 
%0 Journal Article
%A Skupień, Zdzisław
%T Some maximum multigraphs and edge/vertex distance colourings
%J Discussiones Mathematicae. Graph Theory
%D 1995
%P 89-106
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_1995_15_1_a9/
%G en
%F DMGT_1995_15_1_a9
Skupień, Zdzisław. Some maximum multigraphs and edge/vertex distance colourings. Discussiones Mathematicae. Graph Theory, Tome 15 (1995) no. 1, pp. 89-106. http://geodesic.mathdoc.fr/item/DMGT_1995_15_1_a9/

[1] L.D. Andersen, The strong chromatic index of a cubic graph is at most 10, in: J. Nesetril, ed., Topological, Algebraical and Combinatorial Structures; Frolik's Memorial Volume. Discrete Math. 108 (1992) 231-252; reprinted in Vol. 8 of Topics in Discrete Math. (Elsevier, 1993).

[2] J.C. Bermond, J. Bond, M. Paoli and C. Peyrat, Graphs and interconnection networks: diameter and vulnerability, in: Surveys in Combinatorics, Proc. Ninth British Combin. Conf. (London Math. Soc., Lect. Notes Series 82, 1983) 1-30.

[3] F.R.K. Chung, A. Gyarfas, Zs. Tuza and W.T. Trotter, The maximum number of edges in 2K₂-free graphs of bounded degree, Discrete Math. 81 (1990) 129-135, doi: 10.1016/0012-365X(90)90144-7.

[4] R.J. Faudree, A. Gyarfas, R.H. Schelp and Zs. Tuza, Induced matchings in bipartite graphs, Discrete Math. 78 (1989) 83-87, doi: 10.1016/0012-365X(89)90163-5.

[5] R.J. Faudree, R.H. Schelp, A. Gyarfas and Zs. Tuza, The strong chromatic index of graphs, Ars Combinat. 29-B (1990) 205-211.

[6] P. Horák, H. Qing and W.T. Trotter, Induced matchings in cubic graphs, J. Graph Theory 17 (1993) 151-160. [Communicated at 1991 Conf. in Zemplinska Sirava (CS).], doi: 10.1002/jgt.3190170204.

[7] F. Kramer, Sur le nombre chromatique K(p,G) des graphes, Rev. Franç. Automat. Inform. Rech. Opérat. 6 (1972) 67-70; Zbl. 236,05105

[8] F. Kramer and H. Kramer, On the generalized chromatic number, in: Combinatorics '84, Proc. Int. Conf. Finite Geom. Comb. Struct., Bari/Italy, 1984 (Ann. Discrete Math. 30, 1986) 275-284; Zbl. 601,05020.

[9] F.J. MacWilliams and N.J.A. Sloane, The Theory of Error-Correcting Codes (North-Holland, Amsterdam et al., 1981).

[10] C.E. Shannon, A theorem on coloring the lines of a network, J. Math. Phys. 28 (1949) 148-151.

[11] E. Sidorowicz and Z. Skupień, A joint article in preparation.

[12] Z. Skupień, Some maximum multigraphs and chromatic d-index, in: U. Faigle and C. Hoede, eds., 3rd Twente Workshop on Graphs and Combinatorial Optimization (Fac. Appl. Math. Univ. Twente, Enschede, 1993) 173-175.

[13] V.G. Vizing, Chromatic class of a multigraph [Russian], Kibernetika 3 (1965) 29-39.

[14] S. Wagon, (Note) A bound on the chromatic number of graphs without certain induced subgraphs, J. Combin. Theory (B) 29 (1978) 345-346, doi: 10.1016/0095-8956(80)90093-3.