Edge-disjoint paths in permutation graphs
Discussiones Mathematicae. Graph Theory, Tome 15 (1995) no. 1, pp. 59-72.

Voir la notice de l'article provenant de la source Library of Science

In this paper we consider the following problem. Given an undirected graph G = (V,E) and vertices s₁,t₁;s₂,t₂, the problem is to determine whether or not G admits two edge-disjoint paths P₁ and P₂ connecting s₁ with t₁ and s₂ with t₂, respectively. We give a linear (O(|V|+|E|)) algorithm to solve this problem on a permutation graph.
Keywords: algorithm, bridge, connectivity, disjoint paths, permutation graph
@article{DMGT_1995_15_1_a6,
     author = {Gopalakrishnan, C. and Pandu Rangan, C.},
     title = {Edge-disjoint paths in permutation graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {59--72},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_1995_15_1_a6/}
}
TY  - JOUR
AU  - Gopalakrishnan, C.
AU  - Pandu Rangan, C.
TI  - Edge-disjoint paths in permutation graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 1995
SP  - 59
EP  - 72
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_1995_15_1_a6/
LA  - en
ID  - DMGT_1995_15_1_a6
ER  - 
%0 Journal Article
%A Gopalakrishnan, C.
%A Pandu Rangan, C.
%T Edge-disjoint paths in permutation graphs
%J Discussiones Mathematicae. Graph Theory
%D 1995
%P 59-72
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_1995_15_1_a6/
%G en
%F DMGT_1995_15_1_a6
Gopalakrishnan, C.; Pandu Rangan, C. Edge-disjoint paths in permutation graphs. Discussiones Mathematicae. Graph Theory, Tome 15 (1995) no. 1, pp. 59-72. http://geodesic.mathdoc.fr/item/DMGT_1995_15_1_a6/

[1] [AKP] K. Arvind, V. Kamakoti, C. Pandu Rangan, Efficient Parallel Algorithms for Permutation Graphs, to appear in Journal of Parallel and Distributed Computing.

[2] [BM 80] J. A. Bondy, U.S.R. Murty, Graph Theory with Applications, (Macmillan Press, 1976).

[3] [C 80] A. Cypher, An approach to the k paths problem, Proc. of the 12th STOC (1980) 211-217.

[4] [G 80] M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, (Academic Press, 1980).

[5] [F 85] A. Frank, Edge-disjoint paths in planar graphs, J. Combin. Theory (B) 39 (1985) 164-178, doi: 10.1016/0095-8956(85)90046-2.

[6] [GP] C. P. Gopalakrishnan, C. Pandu Rangan, The two paths problem on permutation graphs, (submitted).

[7] [LR 78] A. LaPaugh, R. L. Rievest, The subgraph homeomorphism problem, Proc. of the 10th STOC (1978) 40-50.

[8] [O 80] T. Ohtsuki, The two disjoint path problem and wire routing design, in: Proc. of the 17th Symp. of Res. Inst. of Electrical Comm. (1980) 257-267.

[9] [PS 78] Y. Perl, Y. Shiloach, Finding two disjoint paths between two pairs of vertices in graph, J. of the ACM 25 (1978) 1-9, doi: 10.1145/322047.322048.

[10] [RP] P. B. Ramprasad, C. Pandu Rangan, A new linear time algorithm for the two path problem on planar graphs, to appear.

[11] [S 90] A. Schwill, Nonblocking graphs: Greedy algorithms to compute disjoint paths, Proc. of the 7th STACS (1990) 250-262.

[12] [S 80] Y. Shiloach, A polynomial solution to the undirected two paths problem, J. of the ACM 27 (1980) 445-456, doi: 10.1145/322203.322207.

[13] [S 83] J. Spinrad, Transitive orientation in O(n²) time, Proc. of Fifteenth ACM Symposium on the Theory of Computing (1983) 457-466, doi: 10.1145/800061.808777.

[14] [SP 91] A. Srinivasa Rao, C. Pandu Rangan, Linear algorithms for parity path and two path problems on circular arc graphs, BIT 31 (1991) 182-193.

[15] [KPS 91] S. V. Krishnan, C. Pandu Rangan, S. Seshadri, A. Schwill, Two Disjoint Paths in Chordal graphs, Technical report, 2/91, February 1991, University of Oldenburg, Germany.