The edge domination problem
Discussiones Mathematicae. Graph Theory, Tome 15 (1995) no. 1, pp. 51-57.

Voir la notice de l'article provenant de la source Library of Science

An edge dominating set of a graph is a set D of edges such that every edge not in D is adjacent to at least one edge in D. In this paper we present a linear time algorithm for finding a minimum edge dominating set of a block graph.
Keywords: edge domination, block graph, depth first search
@article{DMGT_1995_15_1_a5,
     author = {Hwang, Shiow-Fen and Chang, Gerard},
     title = {The edge domination problem},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {51--57},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_1995_15_1_a5/}
}
TY  - JOUR
AU  - Hwang, Shiow-Fen
AU  - Chang, Gerard
TI  - The edge domination problem
JO  - Discussiones Mathematicae. Graph Theory
PY  - 1995
SP  - 51
EP  - 57
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_1995_15_1_a5/
LA  - en
ID  - DMGT_1995_15_1_a5
ER  - 
%0 Journal Article
%A Hwang, Shiow-Fen
%A Chang, Gerard
%T The edge domination problem
%J Discussiones Mathematicae. Graph Theory
%D 1995
%P 51-57
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_1995_15_1_a5/
%G en
%F DMGT_1995_15_1_a5
Hwang, Shiow-Fen; Chang, Gerard. The edge domination problem. Discussiones Mathematicae. Graph Theory, Tome 15 (1995) no. 1, pp. 51-57. http://geodesic.mathdoc.fr/item/DMGT_1995_15_1_a5/

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer Algorithms (Addison-Wesley, Reading, MA, 1974).

[2] R. D. Dutton and R. C. Brigham, An extremal problem for the edge domination insensitive graphs, Discrete Applied Math. 20 (1988) 113-125, doi: 10.1016/0166-218X(88)90058-3.

[3] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness (Freeman, New York, 1979).

[4] S. R. Jayaram, Line domination in graphs, Graphs and Combin. 3 (1987) 357-363, doi: 10.1007/BF01788558.

[5] S. Mitchell and S. T. Hedetniemi, Edge domination in trees, in: Proc. 8th S. E. Conf. Combin., Graph Theory and Computing, Congr. Numer. 19 (1977) 489-509.

[6] P. S. Neeralagi, Strong, weak edge domination in a graph, manuscript, November 1988.

[7] M. Yannakakis and F. Gavril, Edge dominating sets in graphs, SIAM J. Appl. Math. 38 (1980) 364-372, doi: 10.1137/0138030.