Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_1995_15_1_a4, author = {Wo\'zniak, M.}, title = {A note on careful packing of a graph}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {43--50}, publisher = {mathdoc}, volume = {15}, number = {1}, year = {1995}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_1995_15_1_a4/} }
Woźniak, M. A note on careful packing of a graph. Discussiones Mathematicae. Graph Theory, Tome 15 (1995) no. 1, pp. 43-50. http://geodesic.mathdoc.fr/item/DMGT_1995_15_1_a4/
[1] B. Bollobás, Extremal Graph Theory (Academic Press, London, 1978).
[2] B. Bollobás and S.E. Eldridge, Packings of graphs and applications to computational complexity, J. Combin Theory (B) 25 (1978) 105-124, doi: 10.1016/0095-8956(78)90030-8.
[3] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, (North-Holland, New York, 1976).
[4] D. Burns and S. Schuster, Every (p,p-2)- graph is contained in its complement, J. Graph Theory 1 (1977) 277-279, doi: 10.1002/jgt.3190010308.
[5] D. Burns and S. Schuster, Embedding (n,n-1)- graphs in their complements, Israel J. Math. 30 (1978) 313-320, doi: 10.1007/BF02761996.
[6] B. Ganter, J. Pelikan and L. Teirlinck, Small sprawling systems of equicardinal sets, Ars Combinatoria 4 (1977) 133-142.
[7] N. Sauer and J. Spencer, Edge disjoint placement of graphs, J. Combin Theory (B) 25 (1978) 295-302, doi: 10.1016/0095-8956(78)90005-9.
[8] M. Woźniak, Embedding of graphs in the complements of their squares, in: J. Nesset ril and M. Fiedler, eds, Fourth Czechoslovakian Symp. on Combinatorics, Graphs and Complexity, (Elsevier Science Publishers B.V.,1992) 345-349.
[9] M. Woźniak, Embedding graphs of small size, Discrete Applied Math. 51 (1994) 233-241, doi: 10.1016/0166-218X(94)90112-0.
[10] M. Woźniak and A.P. Wojda, Triple placement of graphs, Graphs and Combinatorics 9 (1993) 85-91, doi: 10.1007/BF01195330.
[11] H.P. Yap, Some Topics In Graph Theory (London Mathematical Society, Lectures Notes Series 108, Cambridge University Press, Cambridge 1986).
[12] H.P. Yap, Packing of graphs - a survey, Discrete Math. 72 (1988) 395-404, doi: 10.1016/0012-365X(88)90232-4.