A note on careful packing of a graph
Discussiones Mathematicae. Graph Theory, Tome 15 (1995) no. 1, pp. 43-50.

Voir la notice de l'article provenant de la source Library of Science

Let G be a simple graph of order n and size e(G). It is well known that if e(G) ≤ n-2, then there is an edge-disjoint placement of two copies of G into Kₙ. We prove that with the same condition on size of G we have actually (with few exceptions) a careful packing of G, that is an edge-disjoint placement of two copies of G into Kₙ∖Cₙ.
Keywords: pucking of graphs
@article{DMGT_1995_15_1_a4,
     author = {Wo\'zniak, M.},
     title = {A note on careful packing of a graph},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {43--50},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_1995_15_1_a4/}
}
TY  - JOUR
AU  - Woźniak, M.
TI  - A note on careful packing of a graph
JO  - Discussiones Mathematicae. Graph Theory
PY  - 1995
SP  - 43
EP  - 50
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_1995_15_1_a4/
LA  - en
ID  - DMGT_1995_15_1_a4
ER  - 
%0 Journal Article
%A Woźniak, M.
%T A note on careful packing of a graph
%J Discussiones Mathematicae. Graph Theory
%D 1995
%P 43-50
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_1995_15_1_a4/
%G en
%F DMGT_1995_15_1_a4
Woźniak, M. A note on careful packing of a graph. Discussiones Mathematicae. Graph Theory, Tome 15 (1995) no. 1, pp. 43-50. http://geodesic.mathdoc.fr/item/DMGT_1995_15_1_a4/

[1] B. Bollobás, Extremal Graph Theory (Academic Press, London, 1978).

[2] B. Bollobás and S.E. Eldridge, Packings of graphs and applications to computational complexity, J. Combin Theory (B) 25 (1978) 105-124, doi: 10.1016/0095-8956(78)90030-8.

[3] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, (North-Holland, New York, 1976).

[4] D. Burns and S. Schuster, Every (p,p-2)- graph is contained in its complement, J. Graph Theory 1 (1977) 277-279, doi: 10.1002/jgt.3190010308.

[5] D. Burns and S. Schuster, Embedding (n,n-1)- graphs in their complements, Israel J. Math. 30 (1978) 313-320, doi: 10.1007/BF02761996.

[6] B. Ganter, J. Pelikan and L. Teirlinck, Small sprawling systems of equicardinal sets, Ars Combinatoria 4 (1977) 133-142.

[7] N. Sauer and J. Spencer, Edge disjoint placement of graphs, J. Combin Theory (B) 25 (1978) 295-302, doi: 10.1016/0095-8956(78)90005-9.

[8] M. Woźniak, Embedding of graphs in the complements of their squares, in: J. Nesset ril and M. Fiedler, eds, Fourth Czechoslovakian Symp. on Combinatorics, Graphs and Complexity, (Elsevier Science Publishers B.V.,1992) 345-349.

[9] M. Woźniak, Embedding graphs of small size, Discrete Applied Math. 51 (1994) 233-241, doi: 10.1016/0166-218X(94)90112-0.

[10] M. Woźniak and A.P. Wojda, Triple placement of graphs, Graphs and Combinatorics 9 (1993) 85-91, doi: 10.1007/BF01195330.

[11] H.P. Yap, Some Topics In Graph Theory (London Mathematical Society, Lectures Notes Series 108, Cambridge University Press, Cambridge 1986).

[12] H.P. Yap, Packing of graphs - a survey, Discrete Math. 72 (1988) 395-404, doi: 10.1016/0012-365X(88)90232-4.