On chromaticity of graphs
Discussiones Mathematicae. Graph Theory, Tome 15 (1995) no. 1, pp. 19-31.

Voir la notice de l'article provenant de la source Library of Science

In this paper we obtain the explicit formulas for chromatic polynomials of cacti. From the results relating to cacti we deduce the analogous formulas for the chromatic polynomials of n-gon-trees. Besides, we characterize unicyclic graphs by their chromatic polynomials. We also show that the so-called clique-forest-like graphs are chromatically equivalent.
Keywords: chromatic polynomial, chromatically equivalent graphs, chromatic characterization
@article{DMGT_1995_15_1_a2,
     author = {{\L}azuka, Ewa},
     title = {On chromaticity of graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {19--31},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_1995_15_1_a2/}
}
TY  - JOUR
AU  - Łazuka, Ewa
TI  - On chromaticity of graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 1995
SP  - 19
EP  - 31
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_1995_15_1_a2/
LA  - en
ID  - DMGT_1995_15_1_a2
ER  - 
%0 Journal Article
%A Łazuka, Ewa
%T On chromaticity of graphs
%J Discussiones Mathematicae. Graph Theory
%D 1995
%P 19-31
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_1995_15_1_a2/
%G en
%F DMGT_1995_15_1_a2
Łazuka, Ewa. On chromaticity of graphs. Discussiones Mathematicae. Graph Theory, Tome 15 (1995) no. 1, pp. 19-31. http://geodesic.mathdoc.fr/item/DMGT_1995_15_1_a2/

[1] C. Y. Chao and N. Z. Li, On trees of polygons, Archiv Math. 45 (1985) 180-185, doi: 10.1007/BF01270490.

[2] C. Y. Chao and E. G. Whitehead Jr., On chromatic equivalence of graphs, in: Y. Alavi and D. R. Lick, ed., Theory and Applications of Graphs, Lecture Notes in Math. 642 (Springer, Berlin, 1978) 121-131.

[3] G. L. Chia, A note on chromatic uniqueness of graphs, J. Graph Theory 10 (1986) 541-543, doi: 10.1007/BFb0070369.

[4] B. Eisenberg, Generalized lower bounds for the chromatic polynomials, in: A. Dold and B. Eckmann, eds., Recent Trends in Graph Theory, Lecture Notes in Math. 186 (Springer, Berlin, 1971) 85-94, doi: 10.1007/BFb0059427.

[5] F. Harary, Graph Theory (Addison-Wesley, Reading, MA, 1969).

[6] R. C. Read, An introduction to chromatic polynomials, J. Combin. Theory. 4 (1968) 52-71, doi: 10.1016/S0021-9800(68)80087-0.

[7] R. E. Tarjan, Depth first search and linear graph algorithms, SIAM J. Comput. 1 (1972) 146-160, doi: 10.1137/0201010.

[8] C. D. Wakelin and D. R. Woodall, Chromatic polynomials, polygon trees, and outerplanar graphs, J. Graph Theory 16 (1992) 459-466, doi: 10.1002/jgt.3190160507.

[9] H. Whitney, A logical expansion in mathematics, Bull. Amer. Math. Soc. 38 (1932) 572-579, doi: 10.1090/S0002-9904-1932-05460-X.