Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_1995_15_1_a2, author = {{\L}azuka, Ewa}, title = {On chromaticity of graphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {19--31}, publisher = {mathdoc}, volume = {15}, number = {1}, year = {1995}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_1995_15_1_a2/} }
Łazuka, Ewa. On chromaticity of graphs. Discussiones Mathematicae. Graph Theory, Tome 15 (1995) no. 1, pp. 19-31. http://geodesic.mathdoc.fr/item/DMGT_1995_15_1_a2/
[1] C. Y. Chao and N. Z. Li, On trees of polygons, Archiv Math. 45 (1985) 180-185, doi: 10.1007/BF01270490.
[2] C. Y. Chao and E. G. Whitehead Jr., On chromatic equivalence of graphs, in: Y. Alavi and D. R. Lick, ed., Theory and Applications of Graphs, Lecture Notes in Math. 642 (Springer, Berlin, 1978) 121-131.
[3] G. L. Chia, A note on chromatic uniqueness of graphs, J. Graph Theory 10 (1986) 541-543, doi: 10.1007/BFb0070369.
[4] B. Eisenberg, Generalized lower bounds for the chromatic polynomials, in: A. Dold and B. Eckmann, eds., Recent Trends in Graph Theory, Lecture Notes in Math. 186 (Springer, Berlin, 1971) 85-94, doi: 10.1007/BFb0059427.
[5] F. Harary, Graph Theory (Addison-Wesley, Reading, MA, 1969).
[6] R. C. Read, An introduction to chromatic polynomials, J. Combin. Theory. 4 (1968) 52-71, doi: 10.1016/S0021-9800(68)80087-0.
[7] R. E. Tarjan, Depth first search and linear graph algorithms, SIAM J. Comput. 1 (1972) 146-160, doi: 10.1137/0201010.
[8] C. D. Wakelin and D. R. Woodall, Chromatic polynomials, polygon trees, and outerplanar graphs, J. Graph Theory 16 (1992) 459-466, doi: 10.1002/jgt.3190160507.
[9] H. Whitney, A logical expansion in mathematics, Bull. Amer. Math. Soc. 38 (1932) 572-579, doi: 10.1090/S0002-9904-1932-05460-X.