Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_1995_15_1_a1, author = {Mih\'ok, P. and Semani\v{s}in, G.}, title = {Reducible properties of graphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {11--18}, publisher = {mathdoc}, volume = {15}, number = {1}, year = {1995}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_1995_15_1_a1/} }
Mihók, P.; Semanišin, G. Reducible properties of graphs. Discussiones Mathematicae. Graph Theory, Tome 15 (1995) no. 1, pp. 11-18. http://geodesic.mathdoc.fr/item/DMGT_1995_15_1_a1/
[1] V. E. Alekseev, Range of values of entropy of hereditary classes of graphs, Diskretnaja matematika 4 (1992) 148-157 (Russian).
[2] M. Borowiecki, P. Mihók, Hereditary properties of graphs in: Advances in Graph Theory, Vishwa International Publication, India, (1991) 42-69.
[3] G. Chartrand, L. Lesniak, Graphs and Digraphs (Wadsworth Brooks/Cole, Monterey California 1986).
[4] P. Mihók, Additive hereditary properties and uniquely partitionable graphs, in: Graphs, Hypergraphs and Matroids (Zielona Góra, 1985) 49-58.
[5] P. Mihók, An extension of Brook's theorem, Annals of Discrete Math. 51 (1992) 235-236.
[6] P. Mihók, On the minimal reducible bound for outerplanar and planar graphs, (to appear).
[7] M. Simonovits, Extremal graph theory, in: L. W. Beineke and R. J. Wilson eds. Selected Topics in Graph Theory 2 (Academic Press, London, 1983) 161-200.
[8] E. R. Scheinerman, On the structure of hereditary classes of graphs, Journal of Graph Theory 10 (1986) 545-551, doi: 10.1002/jgt.3190100414.
[9] E. R. Scheinerman, J. Zito, On the size of hereditary classes of graphs, J. Combin. Theory (B) 61 (1994) 16-39, doi: 10.1006/jctb.1994.1027.