$S$$k$−prime and $S$$k$−semiprime ideals of semirings
Discussiones Mathematicae. General Algebra and Applications, Tome 44 (2024) no. 2, pp. 301-317.

Voir la notice de l'article provenant de la source Library of Science

Let R be a commutative ring and S a multiplicatively closed subset of R. Hamed and Malek defined an ideal P of R disjoint with S to be an S-prime ideal of R if there exists an s ∈ S such that for all a, b ∈ R if ab ∈ P, then sa ∈ P or sb ∈ P. In this paper, we introduce the notions of S-k-prime and S-k-semiprime ideals of semirings, S-k-m-system, and S-k-p-system. We study some properties and characterizations for S-k-prime and S-k-semiprime ideals of semirings in terms of S-k-m-system and S-k-p-system respectively. We also introduce the concepts of S-prime semiring and S-semiprime semiring and study the characterizations for S-k-prime and S-k-semiprime ideals in these two semirings.
Keywords: Semiring, $S$−$k$prime ideal, $S$−$k$−semiprime ideal, $S$−prime semiring, $S$−semiprime semiring
@article{DMGAA_2024_44_2_a4,
     author = {Bhowmick, Sumon and Goswami, Jituparna and Kar, Sukhendu},
     title = {$S$\ensuremath{-}$k$\ensuremath{-}prime and $S$\ensuremath{-}$k$\ensuremath{-}semiprime ideals of semirings},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {301--317},
     publisher = {mathdoc},
     volume = {44},
     number = {2},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2024_44_2_a4/}
}
TY  - JOUR
AU  - Bhowmick, Sumon
AU  - Goswami, Jituparna
AU  - Kar, Sukhendu
TI  - $S$−$k$−prime and $S$−$k$−semiprime ideals of semirings
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2024
SP  - 301
EP  - 317
VL  - 44
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2024_44_2_a4/
LA  - en
ID  - DMGAA_2024_44_2_a4
ER  - 
%0 Journal Article
%A Bhowmick, Sumon
%A Goswami, Jituparna
%A Kar, Sukhendu
%T $S$−$k$−prime and $S$−$k$−semiprime ideals of semirings
%J Discussiones Mathematicae. General Algebra and Applications
%D 2024
%P 301-317
%V 44
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2024_44_2_a4/
%G en
%F DMGAA_2024_44_2_a4
Bhowmick, Sumon; Goswami, Jituparna; Kar, Sukhendu. $S$−$k$−prime and $S$−$k$−semiprime ideals of semirings. Discussiones Mathematicae. General Algebra and Applications, Tome 44 (2024) no. 2, pp. 301-317. http://geodesic.mathdoc.fr/item/DMGAA_2024_44_2_a4/

[1] F.A.A. Almahdi, E.M. Bouba and M. Tamekkante, On weakly S-prime ideals of commutative rings, Analele stiintifice ale Universitatii Ovidius Constanta, Seria Matematică 29 (2021) 173–186. https://doi.org/10.2478/auom-2021-0024

[2] R.E. Atani and S.E. Atani, Ideal theory in commutative semirings, Buletinul Academiei De Stiinte A Republicii Moldova Matematica 57 (2008) 14–23. https://www.math.md/files/basm/y2008-n2/y2008-n2-(pp14-23).pdf

[3] J.N. Chaudhari, 2-absorbing ideals in semirings, Int. J. Algebra 6 (2012) 265–270. http://www.m-hikari.com/ija/ija-2012/ija-5-8-2012/chaudhariIJA5-8-2012-1.pdf

[4] M.K. Dubey, Prime and weakly prime ideals in semirings, Quasigroups And Related Systems 20 (2012) 197–202. https://www.math.md/files/qrs/v20-n2/v20-n2-(pp197-202).pdf

[5] J.S. Golan, Semirings and Affine Equations over Them: Theory and Applications (Springer Dordrecht, 2003). https://doi.org/10.1007/978-94-017-0383-3

[6] J.S. Golan, Semirings and their Applications (Kluwer Academic Publishers, Dordrecht, 1999). https://doi.org/10.1007/978-94-015-9333-5

[7] A. Hamed and A. Malek, S-prime ideals of a commutative ring, Beiträge Zur Algebra Und Geometrie/Contributions To Algebra And Geometry 61 (2020) 533-542. https://doi.org/10.1007/s13366-019-00476-5

[8] U. Hebisch and H. Weinert, Semirings: algebraic theory and applications in computer science (World Scientific, 1998). https://doi.org/10.1142/3903

[9] T.Y. Lam, A first course in noncommutative rings (Springer New York, NY, 2001). https://doi.org/10.1007/978-1-4419-8616-0

[10] P. Lescot, Prime and primary ideals in semirings, Osaka J. Math. 52 (2015) 721–737. https://doi.org/10.18910/57677

[11] S. Purkait, T.K. Dutta and S. Kar, k-prime and k-semiprime ideals of semirings, Asian-European J. Math. 14 (2021) 2150041-(1–12). https://doi.org/10.1142/S1793557121500418

[12] M.K. Sen and M.R. Adhikari, On k-ideals of semirings, Int. J. Math. and Math. Sci. 15 (1992) 347–350. https://doi.org/10.1155/S0161171292000437

[13] M.K. Sen and M.R. Adhikari, On maximal k-ideals of semirings, Proc. Amer. Math. Soc. 118 (1993) 699–703. https://doi.org/10.2307/2160106

[14] S. Visweswaran, Some results on S-primary ideals of a commutative ring, Beiträge Zur Algebra Und Geometrie/Contributions To Algebra And Geometry 63 (2022) 247–266. https://doi.org/10.1007/s13366-021-00580-5