Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2024_44_2_a4, author = {Bhowmick, Sumon and Goswami, Jituparna and Kar, Sukhendu}, title = {$S$\ensuremath{-}$k$\ensuremath{-}prime and $S$\ensuremath{-}$k$\ensuremath{-}semiprime ideals of semirings}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {301--317}, publisher = {mathdoc}, volume = {44}, number = {2}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2024_44_2_a4/} }
TY - JOUR AU - Bhowmick, Sumon AU - Goswami, Jituparna AU - Kar, Sukhendu TI - $S$−$k$−prime and $S$−$k$−semiprime ideals of semirings JO - Discussiones Mathematicae. General Algebra and Applications PY - 2024 SP - 301 EP - 317 VL - 44 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2024_44_2_a4/ LA - en ID - DMGAA_2024_44_2_a4 ER -
%0 Journal Article %A Bhowmick, Sumon %A Goswami, Jituparna %A Kar, Sukhendu %T $S$−$k$−prime and $S$−$k$−semiprime ideals of semirings %J Discussiones Mathematicae. General Algebra and Applications %D 2024 %P 301-317 %V 44 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGAA_2024_44_2_a4/ %G en %F DMGAA_2024_44_2_a4
Bhowmick, Sumon; Goswami, Jituparna; Kar, Sukhendu. $S$−$k$−prime and $S$−$k$−semiprime ideals of semirings. Discussiones Mathematicae. General Algebra and Applications, Tome 44 (2024) no. 2, pp. 301-317. http://geodesic.mathdoc.fr/item/DMGAA_2024_44_2_a4/
[1] F.A.A. Almahdi, E.M. Bouba and M. Tamekkante, On weakly S-prime ideals of commutative rings, Analele stiintifice ale Universitatii Ovidius Constanta, Seria Matematică 29 (2021) 173–186. https://doi.org/10.2478/auom-2021-0024
[2] R.E. Atani and S.E. Atani, Ideal theory in commutative semirings, Buletinul Academiei De Stiinte A Republicii Moldova Matematica 57 (2008) 14–23. https://www.math.md/files/basm/y2008-n2/y2008-n2-(pp14-23).pdf
[3] J.N. Chaudhari, 2-absorbing ideals in semirings, Int. J. Algebra 6 (2012) 265–270. http://www.m-hikari.com/ija/ija-2012/ija-5-8-2012/chaudhariIJA5-8-2012-1.pdf
[4] M.K. Dubey, Prime and weakly prime ideals in semirings, Quasigroups And Related Systems 20 (2012) 197–202. https://www.math.md/files/qrs/v20-n2/v20-n2-(pp197-202).pdf
[5] J.S. Golan, Semirings and Affine Equations over Them: Theory and Applications (Springer Dordrecht, 2003). https://doi.org/10.1007/978-94-017-0383-3
[6] J.S. Golan, Semirings and their Applications (Kluwer Academic Publishers, Dordrecht, 1999). https://doi.org/10.1007/978-94-015-9333-5
[7] A. Hamed and A. Malek, S-prime ideals of a commutative ring, Beiträge Zur Algebra Und Geometrie/Contributions To Algebra And Geometry 61 (2020) 533-542. https://doi.org/10.1007/s13366-019-00476-5
[8] U. Hebisch and H. Weinert, Semirings: algebraic theory and applications in computer science (World Scientific, 1998). https://doi.org/10.1142/3903
[9] T.Y. Lam, A first course in noncommutative rings (Springer New York, NY, 2001). https://doi.org/10.1007/978-1-4419-8616-0
[10] P. Lescot, Prime and primary ideals in semirings, Osaka J. Math. 52 (2015) 721–737. https://doi.org/10.18910/57677
[11] S. Purkait, T.K. Dutta and S. Kar, k-prime and k-semiprime ideals of semirings, Asian-European J. Math. 14 (2021) 2150041-(1–12). https://doi.org/10.1142/S1793557121500418
[12] M.K. Sen and M.R. Adhikari, On k-ideals of semirings, Int. J. Math. and Math. Sci. 15 (1992) 347–350. https://doi.org/10.1155/S0161171292000437
[13] M.K. Sen and M.R. Adhikari, On maximal k-ideals of semirings, Proc. Amer. Math. Soc. 118 (1993) 699–703. https://doi.org/10.2307/2160106
[14] S. Visweswaran, Some results on S-primary ideals of a commutative ring, Beiträge Zur Algebra Und Geometrie/Contributions To Algebra And Geometry 63 (2022) 247–266. https://doi.org/10.1007/s13366-021-00580-5