On idempotent elements of dually residuated lattice ordered semigroups
Discussiones Mathematicae. General Algebra and Applications, Tome 44 (2024) no. 2, pp. 479-483
Voir la notice de l'article provenant de la source Library of Science
We show that idempotent elements of a dually residuated lattice ordered semigroup (a DRl-semigroup) form a Brouwerian algebra. Further we show that for any idempotent elements x,y such that x≤ y the interval [x;y] is also a DRL-semigroup.
Keywords:
BL-algebra, Boolean algebra, Brouwerian algebra, lattice ordered group, lattice ordered monoid, MV-algebra, dually residuated lattice ordered semigroup
@article{DMGAA_2024_44_2_a14,
author = {Kov\'a\v{r}, Tom\'a\v{s}},
title = {On idempotent elements of dually residuated lattice ordered semigroups},
journal = {Discussiones Mathematicae. General Algebra and Applications},
pages = {479--483},
publisher = {mathdoc},
volume = {44},
number = {2},
year = {2024},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGAA_2024_44_2_a14/}
}
TY - JOUR AU - Kovář, Tomáš TI - On idempotent elements of dually residuated lattice ordered semigroups JO - Discussiones Mathematicae. General Algebra and Applications PY - 2024 SP - 479 EP - 483 VL - 44 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2024_44_2_a14/ LA - en ID - DMGAA_2024_44_2_a14 ER -
Kovář, Tomáš. On idempotent elements of dually residuated lattice ordered semigroups. Discussiones Mathematicae. General Algebra and Applications, Tome 44 (2024) no. 2, pp. 479-483. http://geodesic.mathdoc.fr/item/DMGAA_2024_44_2_a14/