On idempotent elements of dually residuated lattice ordered semigroups
Discussiones Mathematicae. General Algebra and Applications, Tome 44 (2024) no. 2, pp. 479-483.

Voir la notice de l'article provenant de la source Library of Science

We show that idempotent elements of a dually residuated lattice ordered semigroup (a DRl-semigroup) form a Brouwerian algebra. Further we show that for any idempotent elements x,y such that x≤ y the interval [x;y] is also a DRL-semigroup.
Keywords: BL-algebra, Boolean algebra, Brouwerian algebra, lattice ordered group, lattice ordered monoid, MV-algebra, dually residuated lattice ordered semigroup
@article{DMGAA_2024_44_2_a14,
     author = {Kov\'a\v{r}, Tom\'a\v{s}},
     title = {On idempotent elements of dually residuated lattice ordered semigroups},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {479--483},
     publisher = {mathdoc},
     volume = {44},
     number = {2},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2024_44_2_a14/}
}
TY  - JOUR
AU  - Kovář, Tomáš
TI  - On idempotent elements of dually residuated lattice ordered semigroups
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2024
SP  - 479
EP  - 483
VL  - 44
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2024_44_2_a14/
LA  - en
ID  - DMGAA_2024_44_2_a14
ER  - 
%0 Journal Article
%A Kovář, Tomáš
%T On idempotent elements of dually residuated lattice ordered semigroups
%J Discussiones Mathematicae. General Algebra and Applications
%D 2024
%P 479-483
%V 44
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2024_44_2_a14/
%G en
%F DMGAA_2024_44_2_a14
Kovář, Tomáš. On idempotent elements of dually residuated lattice ordered semigroups. Discussiones Mathematicae. General Algebra and Applications, Tome 44 (2024) no. 2, pp. 479-483. http://geodesic.mathdoc.fr/item/DMGAA_2024_44_2_a14/

[1] T. Kovář, Two remarks on dually residuated lattice ordered semigroups, Math. Slovaca 49 (1999) 17–18.

[2] J. Rachůnek, A duality between algebras of basic logic and bounded representable DRl-monoids, Math. Bohem. 126 (2001) 561–569. https://doi.org/10.21136/MB.2001.134199

[3] K.L.N. Swamy, Dually residuated lattice ordered semigroups, Math. Ann. 159 (1965) 105–114. https://doi.org/10.1007/BF01360284