On Nil ideals and Jacobson radical of Leavitt path algebras over commutative rings
Discussiones Mathematicae. General Algebra and Applications, Tome 44 (2024) no. 2, pp. 439-449.

Voir la notice de l'article provenant de la source Library of Science

We show in this paper that for any graph E and for a commutative unital ring R, the nil ideals of the Leavitt path algebra L_R(E) depend solely on the nil ideals of the ring R. A connection between the Jacobson radical of L_R(E) and the Jacobson radical of R is obtained. We also prove that for a nil ideal I of a Leavitt path algebra L_R(E) the ideal M_2(I) is also nil, thus obtaining that Leavitt path algebras over arbitrary graphs satisfy the Köethe's conjecture.
Keywords: Leavitt path algebras, Nil ideals, Jacobson radical, arbitrary graph
@article{DMGAA_2024_44_2_a12,
     author = {Dutta, Dimpy Mala and Buhphang, Ardeline Mary},
     title = {On {Nil} ideals and {Jacobson} radical of {Leavitt} path algebras over  commutative rings},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {439--449},
     publisher = {mathdoc},
     volume = {44},
     number = {2},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2024_44_2_a12/}
}
TY  - JOUR
AU  - Dutta, Dimpy Mala
AU  - Buhphang, Ardeline Mary
TI  - On Nil ideals and Jacobson radical of Leavitt path algebras over  commutative rings
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2024
SP  - 439
EP  - 449
VL  - 44
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2024_44_2_a12/
LA  - en
ID  - DMGAA_2024_44_2_a12
ER  - 
%0 Journal Article
%A Dutta, Dimpy Mala
%A Buhphang, Ardeline Mary
%T On Nil ideals and Jacobson radical of Leavitt path algebras over  commutative rings
%J Discussiones Mathematicae. General Algebra and Applications
%D 2024
%P 439-449
%V 44
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2024_44_2_a12/
%G en
%F DMGAA_2024_44_2_a12
Dutta, Dimpy Mala; Buhphang, Ardeline Mary. On Nil ideals and Jacobson radical of Leavitt path algebras over  commutative rings. Discussiones Mathematicae. General Algebra and Applications, Tome 44 (2024) no. 2, pp. 439-449. http://geodesic.mathdoc.fr/item/DMGAA_2024_44_2_a12/

[1] G. Abrams, P. Ara and M. Siles Molina, Leavitt Path Algebras-Lecture Notes in Mathematics (Springer, London, 2017). https://doi.org/10.1007/978-1-4471-7344-1

[2] G. Abrams, J.P. Bell, P. Colak and K.M. Rangaswamy, Two-sided chain conditions in Leavitt path algebras, J. Algebra and Its Appl. 11(3) (2012) 1250044–1250066. https://doi.org/10.1142/S0219498811005713

[3] G. Abrams, Z. Mesyan and K.M. Rangaswamy, Products of ideals in Leavitt path algebras, Commun. Algebra 48(5) (2020) 1853–1871. https://doi.org/10.1080/00927872.2019.1709477

[4] G.M. Bergman, On Jacobson radicals of graded rings, preprint (1975). available at http://math.berkeley.edu/~gbergman/papers/unpub/

[5] P. Colak, Two-sided ideals in Leavitt path algebras, J. Algebra and Its Appl. 10(5) (2011) 801–809. https://doi.org/10.1142/S0219498811004859

[6] N. Jacobson, The radical and semi-simplicity for arbitrary rings, Amer. J. Math. 67(2) (1945) 300–320. https://doi.org/10.2307/2371731

[7] T.Y. Lam, A First Course in Noncommutative Rings – Graduate Texts in Mathematics 131 (Springer-Verlag, Berlin, New York, Heidelberg, 1991). https://doi.org/10.1007/978-1-4684-0406-7

[8] H. Larki, Ideal structure of Leavitt path algebras with coefficients in a unital commutative ring, Commun. Algebra 43(12) (2015) 5031–5058. https://doi.org/10.1080/00927872.2014.946133

[9] K.M. Rangaswamy, On generators of two-sided ideals of Leavitt path algebras over arbitrary graphs, Commun. Algebra 42(7) (2014) 2859–2868. https://doi.org/10.1080/00927872.2013.765008

[10] S.W. Rigby, T. van den Hove, A classification of ideals in Steinberg and Leavitt path algebras over arbitrary rings, J. Algebra 588 (2021) 200–249. https://doi.org/10.1016/j.jalgebra.2021.08.021

[11] M. Tomforde, Leavitt path algebras with coefficients in a commutative ring, J. Pure Appl. Algebra 215 (2011) 471–484. https://doi.org/10.1016/j.jpaa.2010.04.031

[12] K.M. Rangaswamy, A survey of some of the recent developments in Leavitt path algebras, Leavitt Path Algebras and Classical K-Theory (2020) 3–20. https://doi.org/10.1007/978-981-15-1611-5_1

[13] C. Musili, Introduction to Rings and Modules, Second Revised Edition (Narosa Publishing House, 1994).

[14] M.F. Atiyah and I.G. Macdonald, Introduction to Commutative Algebra (Addison-Wesley Publishing Company, 1969).