A construction of semigroups containing middle units
Discussiones Mathematicae. General Algebra and Applications, Tome 44 (2024) no. 2, pp. 427-437.

Voir la notice de l'article provenant de la source Library of Science

In this paper, we show that semigroups containing middle units can be constructed from semigroups containing one-sided identity elements. Moreover, we show that regular semigroups containing middle units can be obtained from regular monoids.
Keywords: semigroup, regular semigroup, middle unit
@article{DMGAA_2024_44_2_a11,
     author = {Nagy, Attila},
     title = {A construction of semigroups containing middle units},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {427--437},
     publisher = {mathdoc},
     volume = {44},
     number = {2},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2024_44_2_a11/}
}
TY  - JOUR
AU  - Nagy, Attila
TI  - A construction of semigroups containing middle units
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2024
SP  - 427
EP  - 437
VL  - 44
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2024_44_2_a11/
LA  - en
ID  - DMGAA_2024_44_2_a11
ER  - 
%0 Journal Article
%A Nagy, Attila
%T A construction of semigroups containing middle units
%J Discussiones Mathematicae. General Algebra and Applications
%D 2024
%P 427-437
%V 44
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2024_44_2_a11/
%G en
%F DMGAA_2024_44_2_a11
Nagy, Attila. A construction of semigroups containing middle units. Discussiones Mathematicae. General Algebra and Applications, Tome 44 (2024) no. 2, pp. 427-437. http://geodesic.mathdoc.fr/item/DMGAA_2024_44_2_a11/

[1] J.E. Ault, Semigroups with midunits, Semigroup Forum 6 (1973) 346–351. https://doi.org/10.1007/BF02389143

[2] J.E. Ault, Semigroups with midunits, Trans. Amer. Math. Soc. 190 (1974) 375–384. https://doi.org/10.1090/S0002-9947-1974-0340456-5

[3] T.S. Blyth, On middle units in orthodox semigroups, Semigroup Forum 13-1 (1976) 261–265. https://doi.org/10.1007/BF02194944

[4] T.S. Blyth and R. McFadden, On the construction of a class of regular semigroups, J. Algebra 81 (1983) 1–22. https://doi.org/10.1016/0021-8693(83)90205-3

[5] J.L. Chrislock, Semigroups whose regular representation is a group, Proc. Japan Acad. 40 (1964) 799–800. https://doi.org/10.3792/pja/1195522567

[6] J.L. Chrislock, Semigroups whose regular representation is a right group, Amer. Math. Monthly 74 (1967) 1097–1100. https://doi.org/10.2307/2313623

[7] A.H. Clifford and G.B. Preston, The Algebraic Theory of Semigroups I, Amer. Math. Soc. (Providence R.I., 1961). https://doi.org/10.1090/surv/007.1

[8] J.B. Hickey, Semigroups under a sandwich operation, Proc. Edinburgh Math. Soc. 26 (1983) 371–382. https://doi.org/10.1017/S0013091500004442

[9] D.B. McAlister, Regular Rees matrix semigroups and regular Dubreil-Jacotin semigroups, J. Australian Math. Soc. 31 (1981) 325–336. https://doi.org/10.1017/S1446788700019467

[10] A. Nagy, Special Classes of Semigroups, Kluwer Academic Publishers (Dordrecht, Boston, London, 2001). https://doi.org/10.1007/978-1-4757-3316-7

[11] A. Nagy, Remarks on the paper "M. Kolibiar, On a construction of semigroups", Periodica Math. Hungarica 71 (2015) 261–264. https://doi.org/10.1007/s10998-015-0094-z

[12] A. Nagy, Left equalizer simple semigroups, Acta Math. Hungarica 148(2) (2016) 300–311. https://doi.org/10.1007/s10474-015-0578-6

[13] A. Nagy and O. Nagy, A construction of semigroups whose elements are middle units, Int. J. Algebra 14(3) (2020) 163–169. https://doi.org/10.12988/ija.2020.91248

[14] M. Petrich, Lectures in Semigroups (Akademie-Verlag-Berlin, 1977).

[15] M. Yamada, A note on middle unitary semigroups, Kodai Math. Sem. Rep. 7(1955) 49–52. https://doi.org/10.2996/kmj/1138843607