Crypto-automorphism group of some quasigroups
Discussiones Mathematicae. General Algebra and Applications, Tome 44 (2024) no. 1, pp. 57-72.

Voir la notice de l'article provenant de la source Library of Science

In quasigroup and loop theory, a pseudo-automorphism (with single companion) is known to generalize automorphism. In this work, the set of crypto-automorphisms (with twin companion) of a quasigroup with right and left identity elements were shown to form a group. For a quasigroup with right and left identity elements, some results on autotopic characterizations of crypto-automorphisms were established and used to deduce some subgroups of the crypto-automorphism group of a middle Bol loop. The crypto-automorphism group and Bryant-Schneider group (this has been used in the study of the isotopy-isomorphy of some varieties of loops e.g. Bol loops, Moufang loops, Osborn loops) of a loop were found to coincide.
Keywords: quasigroup, loop, crypto-automorphism, Bryant-Schneider group
@article{DMGAA_2024_44_1_a3,
     author = {Oyebo, Yakub Tunde and Osoba, Benard and Jaiyeola, Temitope Gbolahan},
     title = {Crypto-automorphism group of some quasigroups},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {57--72},
     publisher = {mathdoc},
     volume = {44},
     number = {1},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2024_44_1_a3/}
}
TY  - JOUR
AU  - Oyebo, Yakub Tunde
AU  - Osoba, Benard
AU  - Jaiyeola, Temitope Gbolahan
TI  - Crypto-automorphism group of some quasigroups
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2024
SP  - 57
EP  - 72
VL  - 44
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2024_44_1_a3/
LA  - en
ID  - DMGAA_2024_44_1_a3
ER  - 
%0 Journal Article
%A Oyebo, Yakub Tunde
%A Osoba, Benard
%A Jaiyeola, Temitope Gbolahan
%T Crypto-automorphism group of some quasigroups
%J Discussiones Mathematicae. General Algebra and Applications
%D 2024
%P 57-72
%V 44
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2024_44_1_a3/
%G en
%F DMGAA_2024_44_1_a3
Oyebo, Yakub Tunde; Osoba, Benard; Jaiyeola, Temitope Gbolahan. Crypto-automorphism group of some quasigroups. Discussiones Mathematicae. General Algebra and Applications, Tome 44 (2024) no. 1, pp. 57-72. http://geodesic.mathdoc.fr/item/DMGAA_2024_44_1_a3/

[1] J.O. Adeniran, Some properties of the Bryant-Schneider groups of certain Bol loops, Proc. Jangjeon Math. Soc. 6 (1) (2003) 71–80.

[2] J.O. Adeniran, S.A. Akinleye and T.O. Alakoya, On the core and some isotopic characterisations of generalised Bol loops, J. Nigerian Assoc. Math. Phys. 1 (2015) 99–104. https://doi.org/10.22199/issn.0717-6279-4581

[3] J.O. Adeniran, T.G. Jaiyéọlá and K.A. Idowu, Holomorph of generalized Bol loops, Novi Sad J. Math. 44 (1) (2014) 37–51.

[4] J.O. Adeniran, T.G. Jaiyéọlá and K.A. Idowu, On some characterizations of generalized Bol loops, Proyecciones J. Math. 41 (4) (2022) 805–823. https://doi.org/10.22199/issn.0717-6279-4581

[5] V.D. Belousov, Algebraic nets and quasigroups, (Russian), Kishinev, "Shtiintsa", (1971) pp. 166.

[6] V.D. Belousov, Foundations of the theory of quasigroups and loops, (Russian) Izdat. ``Nauka'', Moscow (1967) pp. 223.

[7] V.D. Belousov and E.I. Sokolov, $N$-ary inverse quasigroups (I-quasigroups), (Russian) Mat. Issled. No. 102, Issled. Oper. i Kvazigrupp 118 (1988) 26–36.

[8] S. Burris and H.P. Sankappanavar, A Course in Universal Algebra, Graduate Texts in Mathematics 78 (Springer-Verlag, New York-Berlin, 1981) xvi+276.

[9] R. Capodaglio Di Cocco, On isotopism and pseudo-automorphism of the loops, Bollettino U.M.I. 7 (1993) 199–205.

[10] R. Capodaglio Di Cocco, Regular permutation sets and loops, Bollettino U.M.I. 8 (2003) 617–628.

[11] A. Drapal and V. Shcherbacov, Identities and the group of isostrophisms, Comment. Math. Univ. Carolin. 53 (3) (2012) 347–374.

[12] T. Foguel, M.K. Kinyon and J.D. Phillips, On twisted subgroups and Bol loops of odd order, Rocky Mountain J. Math. 36 (1) (2006) 183–212. https://www.jstor.org/stable/44239103

[13] I. Grecu, On multiplication groups of isostrophic quasigroups, in: Proceedings of the Third Conference of Mathematical Society of Moldova IMCS-50, August 19–23, 2014, Chisinau, Republic of Moldova, 78–81. http://dspace.usm.md:8080/xmlui/handle/123456789/1292

[14] I. Grecu and P. Syrbu, On some isostrophy invariants of Bol loops, Bulletin of the Transilvania University of Brasov, Series III, Mathematics, Informatics, Physics 5 (54) (2012) 145–154.

[15] I. Grecu and P. Syrbu, Commutants of middle Bol loops, Quasigroups and Related Systems 22 (2014) 81–88.

[16] M. Greer and M. Kinyon, Pseudoautomorphisms of Bruck loops and their generalizations, Comment. Math. Univ. Carolin. 53 (3) (2012) 383–389.

[17] A. Gvaramiya, On a class of loops, (Russian), Uch. Zapiski MAPL. 375 (1971) 25–34.

[18] T.G. Jaiyéọlá, S.P. David and Y.T. Oyebo, New algebraic properties of middle Bol loops, ROMAI J. 11 (2) (2015) 161–183.

[19] T.G. Jaiyéọlá, S.P. David and O.O. Oyebola, New algebraic properties of middle Bol loops II, Proyecciones J. Math. 40 (1) (2021) 85–106. https://doi.org/10.22199/issn.0717-6279-2021-01-0006

[20] T.G. Jaiyéọlá, S.P. David, E. Ilojide and Y.T. Oyebo, Holomorphic structure of middle Bol loops, Khayyam J. Math. 3 (2) (2017) 172–184. https://doi.org/10.22034/kjm.2017.51111

[21] D.A. Robinson, The Bryant-Schneider group of a loop, Ann. Soc. Sci. Bruxelles Sér. I 94 (2–3) (1980) 69–81.

[22] T.G. Jaiyéọlá, On Smarandache Bryant Schneider group of A Smarandache loop, Int. J. Math. Combin. 2 (2008) 51–63. https://doi.org/10.5281/zenodo.820935

[23] T.G. Jaiyéọlá, A study of new concepts in smarandache quasigroups and loop, ProQuest Information and Learning (ILQ), Ann Arbor, (2009) pp. 127. https://doi.org/10.5281/zenodo.8913

[24] T.G. Jaiyéọlá, Basic properties of second smarandache Bol loops, Int. J. Math. Combin. 2 (2009) 11–20. https://doi.org/10.5281/zenodo.32303

[25] T.G. Jaiyéọlá, Smarandache isotopy Of second smarandache Bol loops, Sci. Magna J. 7 (1) (2011) 82–93. https://doi.org/10.5281/zenodo.234114

[26] T.G. Jaiyéọlá, J.O. Adéníran and A.R.T. Sòlárìn, Some necessary conditions for the existence of a finite Osborn loop with trivial nucleus, Algebras, Groups and Geometries 28 (4) (2011) 363–380.

[27] T.G. Jaiyéọlá, J.O. Adéníran and A.A.A. Agboola, On the second Bryant Schneider Group of Universal Osborn loops, Societatea Română de Matematică Aplicată si Industrială Journal (ROMAI J.), 9 (1) (2013) 37–50.

[28] T.G. Jaiyéọlá and B.A. Popoola, Holomorph of generalized Bol loops II, Discuss. Math. Gen. Alg. and Appl. 35 (1) (2015) 59–78. https://doi.org/10.7151/dmgaa.1234.

[29] T.G. Jaiyéọlá, B. Osoba and A. Oyem, Isostrophy Bryant-Schneider Group-Invariant of Bol loops, Buletinul Academiei de Stiinte a Republicii Moldova, Matematica 99 (2) (2022) 3–18. https://doi.org/10.56415/basm.y2022.i2.p3

[30] E. Kuznetsov, (2003), Gyrogroups and left gyrogroups as transversals of a special kind, Alg. and Discrete Math. 3 (2003) 54–81.

[31] V.A. Shcherbacov, A-nuclei and A-centers of quasigroup, Institute of Mathematics and Computer Science Academiy of Science of Moldova Academiei str. 5, Chisinau, MD -2028 (Moldova, 2011).

[32] B. Osoba and Y.T. Oyebo, On multiplication groups of middle Bol loop related to left Bol loop, Int. J. Math. and Appl. 6 (4) (2011) 149–155.

[33] B. Osoba and Y.T. Oyebo, On relationship of multiplication groups and isostrophic quasigroups, Int. J. Math. Trends and Tech.y (IJMTT) 58 (2) (2018) 80–84. https://doi.org/10.14445/22315373/IJMTT-V58P511

[34] B. Osoba and T.G. Jaiyéọlá, Algebraic connections between right and middle Bol loops and their cores, Quasigroups and Related Systems 30 (2022) 149–160.

[35] Y.T. Oyebo and B. Osoba, More results on the algebraic properties of middle Bol loops, J. Nigerian Math. Soc. 41 (2) (2022) 129–142.

[36] B. Osoba, Smarandache nuclei of second smarandache Bol loops, Scientia Magna J. 17 (1) (2022), 11–22.

[37] B. Osoba and Y.T. Oyebo, On the Core of Second Smarandache Bol loops, Int. J. Math. Combin. (2) (2023) 18–30.

[38] H.O. Pflugfelder, Quasigroups and Loops: Introduction, Sigma Series in Pure Mathematics 7 (Heldermann Verlag, Berlin. 1990).

[39] V.A. Shcherbacov, Elements of Quasigroup Theory and Applications, Monographs and Research Notes in Mathematics, CRC Press, (Boca Raton, FL, 2017).

[40] A.R.T. Solarin, J.O. Adeniran, T.G. Jaiyé\d{o}lá, A.O. Isere and Y.T. Oyebo, Some Varieties of Loops (Bol-Moufang and Non-Bol-Moufang Types), in: M.N. Hounkonnou, M. Mitrović, M. Abbas, M. Khan, (eds), Algebra without Borders – Classical and Constructive 41. Nonassociative Algebraic Structures, STEAM-H: Science, Technology, Engineering, Agriculture, Mathematics & Health (Springer, Cham., 2023). https://doi.org/10.1007/978-3-031-39334-1_3

[41] P. Syrbu, Loops with universal elasticity, Quasigroups Related Systems 1 (1994) 57–65.

[42] P. Syrbu, On loops with universal elasticity, Quasigroups Related Systems 3 (1996) 41–54.

[43] P. Syrbu, On middle Bol loops, ROMAI J. 6 (2) (2010) 229–236.

[44] P. Syrbu and I. Grecu, On some groups related to middle Bol loops, Revistâ Ştiinţific a Universitâţii de Stat din Moldova 7 (67) (2013) 10–18.

[45] A. Vanliurova, Cores of Bol loops and symmetric groupoids, Bul. Acad. Lztiinle Repub. Mold. Mat. 49 (3) (2005) 153–164.