On ternary ring congruences of ternary semirings
Discussiones Mathematicae. General Algebra and Applications, Tome 44 (2024) no. 1, pp. 43-55.

Voir la notice de l'article provenant de la source Library of Science

In this work, we study the notions of k-ideals and h-ideals of ternary s emirings and investigate some of their algebraic properties. Furthermore, we construct a congruence relation with respect to a full k-ideal on a ternary semiring for the purpose of forming a ternary ring from the quotient ternary semiring.
Keywords: ternary ring, ternary semiring, ring congruence, $k$-ideal, $h$-ideal
@article{DMGAA_2024_44_1_a2,
     author = {Sanborisoot, Jatuporn and Palakawong na Ayutthaya, Pakorn},
     title = {On ternary ring congruences of ternary semirings},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {43--55},
     publisher = {mathdoc},
     volume = {44},
     number = {1},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2024_44_1_a2/}
}
TY  - JOUR
AU  - Sanborisoot, Jatuporn
AU  - Palakawong na Ayutthaya, Pakorn
TI  - On ternary ring congruences of ternary semirings
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2024
SP  - 43
EP  - 55
VL  - 44
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2024_44_1_a2/
LA  - en
ID  - DMGAA_2024_44_1_a2
ER  - 
%0 Journal Article
%A Sanborisoot, Jatuporn
%A Palakawong na Ayutthaya, Pakorn
%T On ternary ring congruences of ternary semirings
%J Discussiones Mathematicae. General Algebra and Applications
%D 2024
%P 43-55
%V 44
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2024_44_1_a2/
%G en
%F DMGAA_2024_44_1_a2
Sanborisoot, Jatuporn; Palakawong na Ayutthaya, Pakorn. On ternary ring congruences of ternary semirings. Discussiones Mathematicae. General Algebra and Applications, Tome 44 (2024) no. 1, pp. 43-55. http://geodesic.mathdoc.fr/item/DMGAA_2024_44_1_a2/

[1] M.R. Adhikari, Basic Algebraic Topology and its Applications (New Delhi, Springer Publication, 2006). https://doi.org/10.1007/978-81-322-2843-1

[2] M.R. Adhikari and A. Adhikari, Basic Modern Algebra with Applications (New Delhi, Springer Publication, 2014). https://doi.org/10.1007/978-81-322-1599-8

[3] D.B. Benson, Bialgebras: some foundations for distributed and concurrent computation (Washington DC, Computer Science Department, Washington State University, 1987). https://doi.org/10.3233/FI-1989-12402

[4] J.H. Conway, Regular Algebra and finite Machines (London. Chapman and Hall, 1971).

[5] T.K. Dutta and S. Kar, On regular ternary semirings, in: Advances in Algebra, Proceeding of ICM Satellite Conference in Algebra and Related Topics, (World Scientific 2003) 343–355. https://doi.org/10.1142/9789812705808_0027

[6] T.K. Dutta and S. Kar, On the Jacobson radical of a ternary semiring, Southeast Asian Bull. Math. 28(1) (2004) 1–13.

[7] T.K. Dutta and S. Kar, A note on the Jacobson radical of a ternary semiring, Southeast Asian Bull. Math. 29(4) (2004) 677–687.

[8] K. Glazek, A Guide to Literature on Semirings and their Applications in Mathematics and Information Sciences with Complete Bibliography (Dodrecht, Kluwer Academic Publishers, 2002). https://doi.org/http://dx.doi.org/10.1007/978-94-015-9964-1

[9] J.S. Golan, Semirings and their Applications (Dodrecht, Kluwer Academic Publishers, 1999). https://doi.org/http://dx.doi.org/10.1007/978-94-015-9333-5

[10] M. Henriksen, Ideals in semirings with commutative addition, Amer. Math. Soc. Notices. 6 (1958) 321.

[11] W. Kuich and W. Salomma, Semirings, Automata, Languages (Berlin, Springer Verlag, 1986). https://doi.org/10.1007/978-3-642-69959-7

[12] D.H. Lehmer, A ternary analogue of abelian groups, American J. Math. 59 (1932) 329–338. https://doi.org/10.2307/2370997

[13] W.G. Lister, Ternary rings, Trans. Amer. Math. Soc. 154 (1971) 37–55. https://doi.org/10.2307/1995425

[14] M.L. Santiago, Regular ternary semigroups, Bull. Calcutta Math. Soc. 82 (1990) 67–71.

[15] M.K. Sen and M.R. Adhikari, On k-ideals of semirings, Internat. J. Math. & Math. Sci. 15(2) (1992) 347–350. https://doi.org/10.1155/S0161171292000437

[16] F.M. Sioson, Ideal theory in ternary semigroups, Math. Jpn. 10 (1965) 63–84.

[17] H.S. Vandiver, Note on a simple type of algebra in which cancellation law of addition does not hold, Bull. Amer. Math. Soc. 40 (1934) 914–920. https://doi.org/10.1090/S0002-9904-1934-06003-8