Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2024_44_1_a2, author = {Sanborisoot, Jatuporn and Palakawong na Ayutthaya, Pakorn}, title = {On ternary ring congruences of ternary semirings}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {43--55}, publisher = {mathdoc}, volume = {44}, number = {1}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2024_44_1_a2/} }
TY - JOUR AU - Sanborisoot, Jatuporn AU - Palakawong na Ayutthaya, Pakorn TI - On ternary ring congruences of ternary semirings JO - Discussiones Mathematicae. General Algebra and Applications PY - 2024 SP - 43 EP - 55 VL - 44 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2024_44_1_a2/ LA - en ID - DMGAA_2024_44_1_a2 ER -
%0 Journal Article %A Sanborisoot, Jatuporn %A Palakawong na Ayutthaya, Pakorn %T On ternary ring congruences of ternary semirings %J Discussiones Mathematicae. General Algebra and Applications %D 2024 %P 43-55 %V 44 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGAA_2024_44_1_a2/ %G en %F DMGAA_2024_44_1_a2
Sanborisoot, Jatuporn; Palakawong na Ayutthaya, Pakorn. On ternary ring congruences of ternary semirings. Discussiones Mathematicae. General Algebra and Applications, Tome 44 (2024) no. 1, pp. 43-55. http://geodesic.mathdoc.fr/item/DMGAA_2024_44_1_a2/
[1] M.R. Adhikari, Basic Algebraic Topology and its Applications (New Delhi, Springer Publication, 2006). https://doi.org/10.1007/978-81-322-2843-1
[2] M.R. Adhikari and A. Adhikari, Basic Modern Algebra with Applications (New Delhi, Springer Publication, 2014). https://doi.org/10.1007/978-81-322-1599-8
[3] D.B. Benson, Bialgebras: some foundations for distributed and concurrent computation (Washington DC, Computer Science Department, Washington State University, 1987). https://doi.org/10.3233/FI-1989-12402
[4] J.H. Conway, Regular Algebra and finite Machines (London. Chapman and Hall, 1971).
[5] T.K. Dutta and S. Kar, On regular ternary semirings, in: Advances in Algebra, Proceeding of ICM Satellite Conference in Algebra and Related Topics, (World Scientific 2003) 343–355. https://doi.org/10.1142/9789812705808_0027
[6] T.K. Dutta and S. Kar, On the Jacobson radical of a ternary semiring, Southeast Asian Bull. Math. 28(1) (2004) 1–13.
[7] T.K. Dutta and S. Kar, A note on the Jacobson radical of a ternary semiring, Southeast Asian Bull. Math. 29(4) (2004) 677–687.
[8] K. Glazek, A Guide to Literature on Semirings and their Applications in Mathematics and Information Sciences with Complete Bibliography (Dodrecht, Kluwer Academic Publishers, 2002). https://doi.org/http://dx.doi.org/10.1007/978-94-015-9964-1
[9] J.S. Golan, Semirings and their Applications (Dodrecht, Kluwer Academic Publishers, 1999). https://doi.org/http://dx.doi.org/10.1007/978-94-015-9333-5
[10] M. Henriksen, Ideals in semirings with commutative addition, Amer. Math. Soc. Notices. 6 (1958) 321.
[11] W. Kuich and W. Salomma, Semirings, Automata, Languages (Berlin, Springer Verlag, 1986). https://doi.org/10.1007/978-3-642-69959-7
[12] D.H. Lehmer, A ternary analogue of abelian groups, American J. Math. 59 (1932) 329–338. https://doi.org/10.2307/2370997
[13] W.G. Lister, Ternary rings, Trans. Amer. Math. Soc. 154 (1971) 37–55. https://doi.org/10.2307/1995425
[14] M.L. Santiago, Regular ternary semigroups, Bull. Calcutta Math. Soc. 82 (1990) 67–71.
[15] M.K. Sen and M.R. Adhikari, On k-ideals of semirings, Internat. J. Math. & Math. Sci. 15(2) (1992) 347–350. https://doi.org/10.1155/S0161171292000437
[16] F.M. Sioson, Ideal theory in ternary semigroups, Math. Jpn. 10 (1965) 63–84.
[17] H.S. Vandiver, Note on a simple type of algebra in which cancellation law of addition does not hold, Bull. Amer. Math. Soc. 40 (1934) 914–920. https://doi.org/10.1090/S0002-9904-1934-06003-8