On 3-prime and quasi 3-primary ideals of ternary semirings
Discussiones Mathematicae. General Algebra and Applications, Tome 44 (2024) no. 1, pp. 163-175.

Voir la notice de l'article provenant de la source Library of Science

The purpose of this paper is to introduce the concept of 3-prime ideal as a generalization of prime ideal. Further, we generalize the concepts of 3-prime ideal and primary ideal, namely as quasi 3-primary ideal in a commutative ternary semiring with zero. The relationship among prime ideal, 3-prime ideal, primary ideal, quasi primary and quasi 3-primary ideal are investigated. Various results and examples concerning 3-prime ideals and quasi 3-primary ideals are given. Analogous theorems to the primary avoidance theorem for quasi 3-primary ideals are also studied.
Keywords: ternary semiring, regular ternary semiring, 3-prime ideals, quasi 3-primary ideals
@article{DMGAA_2024_44_1_a10,
     author = {Mandal, Manasi and Tamang, Nita and Das, Sampad},
     title = {On 3-prime and quasi 3-primary ideals of ternary semirings},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {163--175},
     publisher = {mathdoc},
     volume = {44},
     number = {1},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2024_44_1_a10/}
}
TY  - JOUR
AU  - Mandal, Manasi
AU  - Tamang, Nita
AU  - Das, Sampad
TI  - On 3-prime and quasi 3-primary ideals of ternary semirings
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2024
SP  - 163
EP  - 175
VL  - 44
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2024_44_1_a10/
LA  - en
ID  - DMGAA_2024_44_1_a10
ER  - 
%0 Journal Article
%A Mandal, Manasi
%A Tamang, Nita
%A Das, Sampad
%T On 3-prime and quasi 3-primary ideals of ternary semirings
%J Discussiones Mathematicae. General Algebra and Applications
%D 2024
%P 163-175
%V 44
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2024_44_1_a10/
%G en
%F DMGAA_2024_44_1_a10
Mandal, Manasi; Tamang, Nita; Das, Sampad. On 3-prime and quasi 3-primary ideals of ternary semirings. Discussiones Mathematicae. General Algebra and Applications, Tome 44 (2024) no. 1, pp. 163-175. http://geodesic.mathdoc.fr/item/DMGAA_2024_44_1_a10/

[1] C. Beddani and W. Messirdi, 2-Prime ideals and their applications, J. Algebra and Its Applications 15 (3) (2016) 1650051. https://doi.org/10.1142/S0219498816500511

[2] T.K. Dutta and S. Kar, A note on regular ternary semirings, Kyungpook Math. J. 46 (2006) 357–365.

[3] T.K. Dutta and S. Kar, On regular ternary semirings, Advances in Algebra Proceedings of the ICM Satellite Conference in Algebra and Related Topics, World Scientific, New Jersey (2003) 343–355. https://doi.org/10.1142/9789812705808_0027

[4] T.K. Dutta and S. Kar, On prime ideals and prime radical of ternary semirings, Bull. Cal. Math. Soc. 97 (5) (2005) 445–454.

[5] T.K. Dutta and S. Kar, On semiprime ideals and irreducible ideals of ternary semirings Bull. Cal. Math. Soc. 97 (5) (2005) 467–476.

[6] T.K. Dutta and S. Kar, On ternary semifields, Discuss. Math. Gen. Alg. and Appl. 24 (2) (2004) 185–198. https://doi.org/10.7151/dmgaa.1084

[7] W.G. Lister, Ternary rings, Trans. Amer. Math. Soc. 154 (1971) 37–55.

[8] D.H. Lehmer, A Ternary Analogue of Abelian Group, Amer. J. Math. 59 (1932) 329–338. https://doi.org/10.2307/2370997

[9] S. Koc, U. Tekir and G. Ulucak, On strongly quasi primary ideals, Bull. Korean Math. Soc. 56 (3) (2019) 729–743. https://doi.org/10.4134/BKMS.b180522

[10] R. Nikandish, M.J. Nikmehr and A. Yassine, More on the 2-prime ideals of commutative rings, Bull. Korean Math. Soc. 57 (1) (2020) 117–126. https://doi.org/10.4134/BKMS.b190094

[11] G.S. Rao, D.M. Rao, P. Sivaprasad and M. Vasantha, Ideals in quotient ternary semiring, Int. J. Adv. Management, Techn. and Eng. Sci. 7 (12) (2017).

[12] P. Yiarayong, On weakly completely quasi primary and completely quasi primary ideals in ternary semirings, Commun. Korean Math. Soc. 31 (2016) 657–665. https://doi.org/10.4134/CKMS.c150164