Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2024_44_1_a0, author = {Jamadar, Amlan}, title = {$\pi$-inverse ordered semigroups}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {5--13}, publisher = {mathdoc}, volume = {44}, number = {1}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2024_44_1_a0/} }
Jamadar, Amlan. $\pi$-inverse ordered semigroups. Discussiones Mathematicae. General Algebra and Applications, Tome 44 (2024) no. 1, pp. 5-13. http://geodesic.mathdoc.fr/item/DMGAA_2024_44_1_a0/
[1] A.K. Bhuniya and K. Hansda, On completely regular and Clifford ordered semigroups, Afrika Mat. 31 (2020) 1029–1045. https://doi.org/10.1007/s13370-020-00778-1
[2] G. Birkhoff, Lattice Theory (Providence, 1969).
[3] Y. Cao and X. Xinzhai, Nil-extensions of simple po-semigroups, Comm. Algebra 28(5) (2000) 2477–2496.
[4] K. Hansda, Bi-ideals in Clifford ordered semigroup, Discuss. Math. General Alg. Appl. 33 (2013) 73–84.
[5] K. Hansda and A. Jamadar, Characterization of inverse ordered semigroups by their ordered idempotents and bi-ideals, Quasigroups and Related Systems 28 (2020) 77–88.
[6] N. Kehayopulu, Remark in ordered semigroups, Math. Japonica 35 (1990) 1061–1063.
[7] N. Kehayopulu and M. Tsingelis, On left regular ordered semigroups, South. Asian Bull. Math. 25 (2002) 609–615.
[8] N. Kehayopulu, Ideals and Green's relations in ordered semigroups, Int. J. Math. and Math. Sci. 2006 (1–8) Article ID 61286.
[9] N. Kehayopulu, On completely regular poe-semigroups, Math. Japonica 37 (1992) 123–130.