On some subgroup lattices of dihedral, alternating and symmetric groups
Discussiones Mathematicae. General Algebra and Applications, Tome 43 (2023) no. 2, pp. 309-326.

Voir la notice de l'article provenant de la source Library of Science

In this paper, the collections of all pronormal subgroups of D_n and Hall subgroups for groups A_n, S_n and D_n are studied. It is proved that the collection of all pronormal subgroups of D_n is a sublattice of L(D_n). It is also proved that the collection of all Hall subgroups of D_n, A_n and S_n do not form sublattices of respective L(D_n), L(A_n) and L(S_n).
Keywords: group, pronormal subgroup, Hall subgroup, lattice of subgroups, strong lattice
@article{DMGAA_2023_43_2_a9,
     author = {Mitkari, Shrawani and Kharat, Vilas and Ballal, Sachin},
     title = {On some subgroup lattices of dihedral, alternating and symmetric groups},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {309--326},
     publisher = {mathdoc},
     volume = {43},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2023_43_2_a9/}
}
TY  - JOUR
AU  - Mitkari, Shrawani
AU  - Kharat, Vilas
AU  - Ballal, Sachin
TI  - On some subgroup lattices of dihedral, alternating and symmetric groups
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2023
SP  - 309
EP  - 326
VL  - 43
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2023_43_2_a9/
LA  - en
ID  - DMGAA_2023_43_2_a9
ER  - 
%0 Journal Article
%A Mitkari, Shrawani
%A Kharat, Vilas
%A Ballal, Sachin
%T On some subgroup lattices of dihedral, alternating and symmetric groups
%J Discussiones Mathematicae. General Algebra and Applications
%D 2023
%P 309-326
%V 43
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2023_43_2_a9/
%G en
%F DMGAA_2023_43_2_a9
Mitkari, Shrawani; Kharat, Vilas; Ballal, Sachin. On some subgroup lattices of dihedral, alternating and symmetric groups. Discussiones Mathematicae. General Algebra and Applications, Tome 43 (2023) no. 2, pp. 309-326. http://geodesic.mathdoc.fr/item/DMGAA_2023_43_2_a9/

[1] G. Birkhoff, Lattice Theory, 3rd Ed. 25 (Amer. Math. Soc. Providence, R.I. 1967).

[2] S.K. Chebolu and K. Lockridge, Fuchs' problem for dihedral groups, J. Pure Appl. Alg. 221 (4) (2017) 971–982. https://doi.org/10.1016/j.jpaa.2016.08.015

[3] K. Conrad, Consequences of the Sylow Theorems. https://kconrad.math.uconn.edu/blurbs/grouptheory/sylowapp.pdf

[4] K. Conrad, Dihedral Groups II. https://kconrad.math.uconn.edu/blurbs/grouptheory/dihedral2.pdf

[5] U. Faigle, Geometries on partially ordered sets, J. Combin. Theory Ser. B 28 (1980) 26–51. https://doi.org/10.1016/0095-8956(80)90054-4

[6] G. Grätzer, General Lattice Theory (Academic press, New York, 1978)

[7] P. Hall, Theorems like Sylow’s, Proc. London Math. Soc. 22 (6) (1956) 286–304. https://doi.org/10.1112/plms/s3-6.2.286

[8] I.S. Luthar and I.B.S. Passi, Algebra Volume 1: Groups (Narosa Publishing House Pvt. Ltd., New Delhi, 1999).

[9] A. Mann, A criterion for pronormality, J. London Math. Soc. 44 (1969) 175–176. https://doi.org/10.1112/jlms/s1-44.1.175

[10] P.P. Pálfy, Groups and lattices, London Math. Soc. Lecture Note Ser. 305 (2003) 428–454.

[11] T.A. Peng, Pronormality in finite groups, J. London Math. Soc. 3 (1971) 301–306. https://doi.org/10.1112/jlms/s2-3.2.301

[12] G. Richter and M. Stern, Strongness in (semimodular) lattices of finite length, Wiss. Z. Univ. Halle 33 (1984) 73–77.

[13] J.S. Rose, Finite soluble groups with pronormal system normalizers, Proc. London Math. Soc. 17 (3) (1969) 447–469. https://doi.org/10.1112/plms/s3-17.3.447

[14] R. Schmidt, Subgroup Lattices of Groups, de Gruyter Expositions in Mathematics 14 (de Gruyter, Berlin, 1994).

[15] R. Soloman, A brief history of the classification of the finite simple groups, Bull. Amer. Math. Soc. 38 (3) (2001) 315–352. https://doi.org/10.1090/S0273-0979-01-00909-0

[16] M. Stern, Semimodular Lattices (Cambridge University Press, 1999).

[17] R. Sulaiman, Subgroups Lattice of symmetric group $S_4$, Int. J. Algebra 6 (1) (2012) 29–35.

[18] M. Suzuki, Structure of Groups and Structures of its Lattice of Subgroups (Springer Verlag, Berlin, 1956).

[19] E.P. Vdovin and D.O. Revin, Pronormality and strong pronormality of subgroups, Algebra Log. 52 (2013) 15–23. https://doi.org/10.1007/s10469-013-9215-z

[20] E.P. Vdovin and D.O. Revin, On the pronormality of Hall subgroups, Sib. Math. J. 54 (1) (2013) 22–28. https://doi.org/10.1134/S0037446613010035

[21] P.M. Whitman, Groups with a cyclic group as a lattice homomorph, Ann. Math. 49 (2) (1948) 347–351. https://doi.org/10.2307/1969283