Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2023_43_2_a9, author = {Mitkari, Shrawani and Kharat, Vilas and Ballal, Sachin}, title = {On some subgroup lattices of dihedral, alternating and symmetric groups}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {309--326}, publisher = {mathdoc}, volume = {43}, number = {2}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2023_43_2_a9/} }
TY - JOUR AU - Mitkari, Shrawani AU - Kharat, Vilas AU - Ballal, Sachin TI - On some subgroup lattices of dihedral, alternating and symmetric groups JO - Discussiones Mathematicae. General Algebra and Applications PY - 2023 SP - 309 EP - 326 VL - 43 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2023_43_2_a9/ LA - en ID - DMGAA_2023_43_2_a9 ER -
%0 Journal Article %A Mitkari, Shrawani %A Kharat, Vilas %A Ballal, Sachin %T On some subgroup lattices of dihedral, alternating and symmetric groups %J Discussiones Mathematicae. General Algebra and Applications %D 2023 %P 309-326 %V 43 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGAA_2023_43_2_a9/ %G en %F DMGAA_2023_43_2_a9
Mitkari, Shrawani; Kharat, Vilas; Ballal, Sachin. On some subgroup lattices of dihedral, alternating and symmetric groups. Discussiones Mathematicae. General Algebra and Applications, Tome 43 (2023) no. 2, pp. 309-326. http://geodesic.mathdoc.fr/item/DMGAA_2023_43_2_a9/
[1] G. Birkhoff, Lattice Theory, 3rd Ed. 25 (Amer. Math. Soc. Providence, R.I. 1967).
[2] S.K. Chebolu and K. Lockridge, Fuchs' problem for dihedral groups, J. Pure Appl. Alg. 221 (4) (2017) 971–982. https://doi.org/10.1016/j.jpaa.2016.08.015
[3] K. Conrad, Consequences of the Sylow Theorems. https://kconrad.math.uconn.edu/blurbs/grouptheory/sylowapp.pdf
[4] K. Conrad, Dihedral Groups II. https://kconrad.math.uconn.edu/blurbs/grouptheory/dihedral2.pdf
[5] U. Faigle, Geometries on partially ordered sets, J. Combin. Theory Ser. B 28 (1980) 26–51. https://doi.org/10.1016/0095-8956(80)90054-4
[6] G. Grätzer, General Lattice Theory (Academic press, New York, 1978)
[7] P. Hall, Theorems like Sylow’s, Proc. London Math. Soc. 22 (6) (1956) 286–304. https://doi.org/10.1112/plms/s3-6.2.286
[8] I.S. Luthar and I.B.S. Passi, Algebra Volume 1: Groups (Narosa Publishing House Pvt. Ltd., New Delhi, 1999).
[9] A. Mann, A criterion for pronormality, J. London Math. Soc. 44 (1969) 175–176. https://doi.org/10.1112/jlms/s1-44.1.175
[10] P.P. Pálfy, Groups and lattices, London Math. Soc. Lecture Note Ser. 305 (2003) 428–454.
[11] T.A. Peng, Pronormality in finite groups, J. London Math. Soc. 3 (1971) 301–306. https://doi.org/10.1112/jlms/s2-3.2.301
[12] G. Richter and M. Stern, Strongness in (semimodular) lattices of finite length, Wiss. Z. Univ. Halle 33 (1984) 73–77.
[13] J.S. Rose, Finite soluble groups with pronormal system normalizers, Proc. London Math. Soc. 17 (3) (1969) 447–469. https://doi.org/10.1112/plms/s3-17.3.447
[14] R. Schmidt, Subgroup Lattices of Groups, de Gruyter Expositions in Mathematics 14 (de Gruyter, Berlin, 1994).
[15] R. Soloman, A brief history of the classification of the finite simple groups, Bull. Amer. Math. Soc. 38 (3) (2001) 315–352. https://doi.org/10.1090/S0273-0979-01-00909-0
[16] M. Stern, Semimodular Lattices (Cambridge University Press, 1999).
[17] R. Sulaiman, Subgroups Lattice of symmetric group $S_4$, Int. J. Algebra 6 (1) (2012) 29–35.
[18] M. Suzuki, Structure of Groups and Structures of its Lattice of Subgroups (Springer Verlag, Berlin, 1956).
[19] E.P. Vdovin and D.O. Revin, Pronormality and strong pronormality of subgroups, Algebra Log. 52 (2013) 15–23. https://doi.org/10.1007/s10469-013-9215-z
[20] E.P. Vdovin and D.O. Revin, On the pronormality of Hall subgroups, Sib. Math. J. 54 (1) (2013) 22–28. https://doi.org/10.1134/S0037446613010035
[21] P.M. Whitman, Groups with a cyclic group as a lattice homomorph, Ann. Math. 49 (2) (1948) 347–351. https://doi.org/10.2307/1969283