Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2023_43_2_a7, author = {Tenkeu Jeufack, Y.L. and Djoumessi, J. and Temgoua, E.R.A.}, title = {Binary relations and submaximal clones determined by central relation}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {263--300}, publisher = {mathdoc}, volume = {43}, number = {2}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2023_43_2_a7/} }
TY - JOUR AU - Tenkeu Jeufack, Y.L. AU - Djoumessi, J. AU - Temgoua, E.R.A. TI - Binary relations and submaximal clones determined by central relation JO - Discussiones Mathematicae. General Algebra and Applications PY - 2023 SP - 263 EP - 300 VL - 43 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2023_43_2_a7/ LA - en ID - DMGAA_2023_43_2_a7 ER -
%0 Journal Article %A Tenkeu Jeufack, Y.L. %A Djoumessi, J. %A Temgoua, E.R.A. %T Binary relations and submaximal clones determined by central relation %J Discussiones Mathematicae. General Algebra and Applications %D 2023 %P 263-300 %V 43 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGAA_2023_43_2_a7/ %G en %F DMGAA_2023_43_2_a7
Tenkeu Jeufack, Y.L.; Djoumessi, J.; Temgoua, E.R.A. Binary relations and submaximal clones determined by central relation. Discussiones Mathematicae. General Algebra and Applications, Tome 43 (2023) no. 2, pp. 263-300. http://geodesic.mathdoc.fr/item/DMGAA_2023_43_2_a7/
[1] Baker, K.A., Pixley, A.F.: Polynomial interpolation and the Chinese remainder theorem for algebraic systems. Math.Z.143, 165-174 (1975).
[2] Diekouam, L., Tenkeu, J.Y.L., Temgoua, A.E.R., Tonga, M.: Meet-reducible submaximal clones determined by nontrivial equivalence relations, Journal of Algebra, Number theory; advances and Applications. Vol 17, $N_{0}$ 1,29-93, (2017). DOI: http://dx.doi.org/jantaa$_{-}$7100121803
[3] Lau, D.: Submaximale Klassen von $P_{3}$. J. Inf. Process. Cybern. EIK 18, 4/5, 227-243 (1982).
[4] Lau, D.: Function Algebras on finite sets. A basic course on many-valued logic and clone theory. Springer-Verlag, New York, Heidelberg, Berlin, (2006).
[5] Post, E.L.: Introduction to a general theory of elementary propositions. Amer. J. Math. 43, 163-185 (1921).
[6] Post, E.L.: The two-valued iterative systems of mathematical logic. Ann. Math. Studies 5, Princeton University Press (1941).
[7] Rosenberg, I.G.: La structure des fonctions de plusieurs variables sur un ensemble fini. C. R. Acad. Sci. Paris, Ser.A–B 260, 3817-3819 (1965).
[8] Rosenberg, I.G., Szendrei,Á.: Submaximal clones with a prime order automorphism. Acta Sci. Math. 49, 29-48 (1985).
[9] P$\ddot{o}$schel, R., Kalu$\breve{z}$nin, L.A.: Funktionen-und Relationenalgebren. VEB Deutscher Verlag der Wissenschaften. Berlin, (1979).
[10] Temgoua, E.R.A., Rosenberg, I.G.: Binary central relations and submaximal clones determined by nontrivial equivalence relations. Algebra universalis 67, 299-311 (2012).DOI 10.1007/s00012-012-0183-2
[11] Temgoua, A.E.R.: Meet-irreducible submaximal clones determined by nontrivial equivalence relations. Algebra universalis 70, 175-196 (2013).DOI 10.1007/s00012-013-0244-1
[12] Jeufack, Y.L.T., Diekouam, L., Temgoua, A.E.R.: Meet-reducible submaximal clones determined by two central relations.Asian-European Journal of Mathematics, Vol.12, $N_{0}.1$,(26pages), (2018). DOI: 10.1142/1793557119500645
[13] Szendrei, Á.: Clones in universal Algebra. Séminaire de mathématiques supérieures,Vol. 99. Les presses de l'université de Montréal (1986).