Binary relations and submaximal clones determined by central relation
Discussiones Mathematicae. General Algebra and Applications, Tome 43 (2023) no. 2, pp. 263-300.

Voir la notice de l'article provenant de la source Library of Science

Let ρ be an h-ary central relation (h≥ 2) and σ a binary relation on a finite set A such that σρ. It is known from Rosenberg's classification theorem (1965) that the clone Polρ which consists of all operations on A that preserve ρ is a maximal clone on A. In this paper, we find all binary relations σ such that the clone Pol{ρ, σ} is a maximal subclone of Polρ, where ρ is a fixed central relation.
Keywords: central relations, meet-reducible, meet-irreducible, submaximal, clones
@article{DMGAA_2023_43_2_a7,
     author = {Tenkeu Jeufack, Y.L. and Djoumessi, J. and Temgoua, E.R.A.},
     title = {Binary relations and submaximal clones determined by central relation},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {263--300},
     publisher = {mathdoc},
     volume = {43},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2023_43_2_a7/}
}
TY  - JOUR
AU  - Tenkeu Jeufack, Y.L.
AU  - Djoumessi, J.
AU  - Temgoua, E.R.A.
TI  - Binary relations and submaximal clones determined by central relation
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2023
SP  - 263
EP  - 300
VL  - 43
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2023_43_2_a7/
LA  - en
ID  - DMGAA_2023_43_2_a7
ER  - 
%0 Journal Article
%A Tenkeu Jeufack, Y.L.
%A Djoumessi, J.
%A Temgoua, E.R.A.
%T Binary relations and submaximal clones determined by central relation
%J Discussiones Mathematicae. General Algebra and Applications
%D 2023
%P 263-300
%V 43
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2023_43_2_a7/
%G en
%F DMGAA_2023_43_2_a7
Tenkeu Jeufack, Y.L.; Djoumessi, J.; Temgoua, E.R.A. Binary relations and submaximal clones determined by central relation. Discussiones Mathematicae. General Algebra and Applications, Tome 43 (2023) no. 2, pp. 263-300. http://geodesic.mathdoc.fr/item/DMGAA_2023_43_2_a7/

[1] Baker, K.A., Pixley, A.F.: Polynomial interpolation and the Chinese remainder theorem for algebraic systems. Math.Z.143, 165-174 (1975).

[2] Diekouam, L., Tenkeu, J.Y.L., Temgoua, A.E.R., Tonga, M.: Meet-reducible submaximal clones determined by nontrivial equivalence relations, Journal of Algebra, Number theory; advances and Applications. Vol 17, $N_{0}$ 1,29-93, (2017). DOI: http://dx.doi.org/jantaa$_{-}$7100121803

[3] Lau, D.: Submaximale Klassen von $P_{3}$. J. Inf. Process. Cybern. EIK 18, 4/5, 227-243 (1982).

[4] Lau, D.: Function Algebras on finite sets. A basic course on many-valued logic and clone theory. Springer-Verlag, New York, Heidelberg, Berlin, (2006).

[5] Post, E.L.: Introduction to a general theory of elementary propositions. Amer. J. Math. 43, 163-185 (1921).

[6] Post, E.L.: The two-valued iterative systems of mathematical logic. Ann. Math. Studies 5, Princeton University Press (1941).

[7] Rosenberg, I.G.: La structure des fonctions de plusieurs variables sur un ensemble fini. C. R. Acad. Sci. Paris, Ser.A–B 260, 3817-3819 (1965).

[8] Rosenberg, I.G., Szendrei,Á.: Submaximal clones with a prime order automorphism. Acta Sci. Math. 49, 29-48 (1985).

[9] P$\ddot{o}$schel, R., Kalu$\breve{z}$nin, L.A.: Funktionen-und Relationenalgebren. VEB Deutscher Verlag der Wissenschaften. Berlin, (1979).

[10] Temgoua, E.R.A., Rosenberg, I.G.: Binary central relations and submaximal clones determined by nontrivial equivalence relations. Algebra universalis 67, 299-311 (2012).DOI 10.1007/s00012-012-0183-2

[11] Temgoua, A.E.R.: Meet-irreducible submaximal clones determined by nontrivial equivalence relations. Algebra universalis 70, 175-196 (2013).DOI 10.1007/s00012-013-0244-1

[12] Jeufack, Y.L.T., Diekouam, L., Temgoua, A.E.R.: Meet-reducible submaximal clones determined by two central relations.Asian-European Journal of Mathematics, Vol.12, $N_{0}.1$,(26pages), (2018). DOI: 10.1142/1793557119500645

[13] Szendrei, Á.: Clones in universal Algebra. Séminaire de mathématiques supérieures,Vol. 99. Les presses de l'université de Montréal (1986).