A Note on the Abundance of Partial Transformation Semigroups with Fixed Point Sets
Discussiones Mathematicae. General Algebra and Applications, Tome 43 (2023) no. 2, pp. 241-247.

Voir la notice de l'article provenant de la source Library of Science

Given a non-empty set X and let P(X) be the partial transformation semigroup on X. For a fixed non-empty subset Y of X, let PFix(X,Y)={α∈ P(X):yα=y for all y ∈dom ( α ) ∩ Y}. Then PFix(X,Y) is a subsemigroup of P(X). In this paper, we show that PFix(X,Y) is always abundant, even if it is not regular. Moreover, unit regular and coregular elements of such semigroup are all completely characterized.
Keywords: partial transformation semigroup, abundance, unit regularity, coregularity
@article{DMGAA_2023_43_2_a5,
     author = {Wijarajak, Rattiya and Chaiya, Yanisa},
     title = {A {Note} on the {Abundance} of {Partial} {Transformation} {Semigroups} with {Fixed} {Point} {Sets}},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {241--247},
     publisher = {mathdoc},
     volume = {43},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2023_43_2_a5/}
}
TY  - JOUR
AU  - Wijarajak, Rattiya
AU  - Chaiya, Yanisa
TI  - A Note on the Abundance of Partial Transformation Semigroups with Fixed Point Sets
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2023
SP  - 241
EP  - 247
VL  - 43
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2023_43_2_a5/
LA  - en
ID  - DMGAA_2023_43_2_a5
ER  - 
%0 Journal Article
%A Wijarajak, Rattiya
%A Chaiya, Yanisa
%T A Note on the Abundance of Partial Transformation Semigroups with Fixed Point Sets
%J Discussiones Mathematicae. General Algebra and Applications
%D 2023
%P 241-247
%V 43
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2023_43_2_a5/
%G en
%F DMGAA_2023_43_2_a5
Wijarajak, Rattiya; Chaiya, Yanisa. A Note on the Abundance of Partial Transformation Semigroups with Fixed Point Sets. Discussiones Mathematicae. General Algebra and Applications, Tome 43 (2023) no. 2, pp. 241-247. http://geodesic.mathdoc.fr/item/DMGAA_2023_43_2_a5/

[1] Y. Chaiya, P. Honyam and J. Sanwong, Maximal subsemigroups and finiteness conditions on transformation semigroups with fixed sets, Turkish J. Math. 41 (2017) 43–54.

[2] Y. Chaiya, P. Honyam and J. Sanwong, Natural Partial Orders on Transformation Semigroups with Fixed Sets, Int. J. Math. Math. Sci. Article ID 2759090 (2016) 1-7.

[3] R. Chinram and W. Yonthanthum, Regularity of the semigroups of transformations with a fixed point set, Thai J. Math. 18 (2020) 1261–1268.

[4] P. Honyam and J.Sanwong, Semigroups of transformations with fixed sets, Quaest. Math. 36 (2013) 79-92.

[5] J.M. Howie, Fundamentals of Semigroup Theory (London Mathematics Society Monographs, New Series, vol. 12. Clarendon Press, Oxford, 1995).

[6] I. Dimitrova and J.Koppitz, Coregular Semigroups of Full Transformations, Demonstr. Math. XLIV(4) (2011) 739–753.

[7] E.S. Lyapin, Semigroups (Am. Math. Soc, Providence, 1963).

[8] N. Nupo and C. Pookpienlert, On connectedness and completeness of Cayley digraphs of transformation semigroups with fixed sets, Int. Electron. J. Algebra 28 (2020) 110–126.

[9] N. Nupo and C. Pookpienlert, Domination parameters on Cayley digraphs of transformation semigroups with fixed sets, Turkish J. Math. 45(4) (2021) 1775–1788.