Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2023_43_2_a4, author = {Romano, Daniel Abraham}, title = {A note on weak-interior and quasi-interior ideals in quasi-ordered semigroups}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {233--239}, publisher = {mathdoc}, volume = {43}, number = {2}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2023_43_2_a4/} }
TY - JOUR AU - Romano, Daniel Abraham TI - A note on weak-interior and quasi-interior ideals in quasi-ordered semigroups JO - Discussiones Mathematicae. General Algebra and Applications PY - 2023 SP - 233 EP - 239 VL - 43 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2023_43_2_a4/ LA - en ID - DMGAA_2023_43_2_a4 ER -
%0 Journal Article %A Romano, Daniel Abraham %T A note on weak-interior and quasi-interior ideals in quasi-ordered semigroups %J Discussiones Mathematicae. General Algebra and Applications %D 2023 %P 233-239 %V 43 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGAA_2023_43_2_a4/ %G en %F DMGAA_2023_43_2_a4
Romano, Daniel Abraham. A note on weak-interior and quasi-interior ideals in quasi-ordered semigroups. Discussiones Mathematicae. General Algebra and Applications, Tome 43 (2023) no. 2, pp. 233-239. http://geodesic.mathdoc.fr/item/DMGAA_2023_43_2_a4/
[1] W. Jantanan, O. Johdee and N. Praththong, Bi-interior ideals and interior ideals of ordered semigroups, in: The 14th National and International Sripatum University Conference (SPUCON2019) (pp. 2060–2069). Sripatum University, Bangkok, 2019.
[2] N. Kehayopulu, Note on interior ideals, ideal elements in ordered semigroups, Sci. Math. 2 (3) (1999) 407–409.
[3] N. Kehayopulu and M. Tsingelis, Fuzzy interior ideals in ordered semigroups, Lobachevskii J. Math. 21 (2006) 65–71.
[4] S. Lajos, $(m;k;n)$-ideals in semigroups, in: Notes on Semigroups II, Karl Marx Univ. Econ., Dept. Math. Budapest 1 (1976) 12–19.
[5] M.M. Krishna Rao, A study of generalization of bi-ideal, quasi-ideal and interior ideal of semigroup, Math. Morovica 22 (2) (2018) 103–115. https://doi.org/10.5937/MatMor1802103M
[6] M.M. Krishna Rao, Quasi-interior ideals and fuzzy quasi-interior ideals of $Γ$-semirings, Ann. Fuzzy Math. Inform. 18 (1) (2019) 31–43. https://doi.org/10.30948/afmi.2019.18.1.31
[7] M.M. Krishna Rao, Quasi-interior ideals and fuzzy quasi-interior ideals of semigroups, Ann. Fuzzy Math. Inform. 19 (2) (2020) 199–208. https://doi.org/10.30948/afmi.2020.19.2.199
[8] G. Szasz, Interior ideals in semigroups, in: Notes on Semigroups, Karl Marx Univ. Econ., Dept. Math. Budapest 5 (1977) 1–7.
[9] G. Szasz, Remark on interior ideals of semigroups, Studia Sci. Math. Hung. 16 (1981) 61–63.