A note on weak-interior and quasi-interior ideals in quasi-ordered semigroups
Discussiones Mathematicae. General Algebra and Applications, Tome 43 (2023) no. 2, pp. 233-239.

Voir la notice de l'article provenant de la source Library of Science

This short note introduces the concepts of (left, right) weak-interior ideals and (left, right) quasi-interior ideals in quasi-ordered semigroups and analyzes the relationships between (left, right) ideals, interior ideals and these two newly introduced classes of ideals in quasi-ordered semigroups.
Keywords: quasi-ordered semigroup, ideal, interior ideal, weak-interior ideal and quasi-interior ideal
@article{DMGAA_2023_43_2_a4,
     author = {Romano, Daniel Abraham},
     title = {A note on weak-interior and quasi-interior ideals in quasi-ordered semigroups},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {233--239},
     publisher = {mathdoc},
     volume = {43},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2023_43_2_a4/}
}
TY  - JOUR
AU  - Romano, Daniel Abraham
TI  - A note on weak-interior and quasi-interior ideals in quasi-ordered semigroups
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2023
SP  - 233
EP  - 239
VL  - 43
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2023_43_2_a4/
LA  - en
ID  - DMGAA_2023_43_2_a4
ER  - 
%0 Journal Article
%A Romano, Daniel Abraham
%T A note on weak-interior and quasi-interior ideals in quasi-ordered semigroups
%J Discussiones Mathematicae. General Algebra and Applications
%D 2023
%P 233-239
%V 43
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2023_43_2_a4/
%G en
%F DMGAA_2023_43_2_a4
Romano, Daniel Abraham. A note on weak-interior and quasi-interior ideals in quasi-ordered semigroups. Discussiones Mathematicae. General Algebra and Applications, Tome 43 (2023) no. 2, pp. 233-239. http://geodesic.mathdoc.fr/item/DMGAA_2023_43_2_a4/

[1] W. Jantanan, O. Johdee and N. Praththong, Bi-interior ideals and interior ideals of ordered semigroups, in: The 14th National and International Sripatum University Conference (SPUCON2019) (pp. 2060–2069). Sripatum University, Bangkok, 2019.

[2] N. Kehayopulu, Note on interior ideals, ideal elements in ordered semigroups, Sci. Math. 2 (3) (1999) 407–409.

[3] N. Kehayopulu and M. Tsingelis, Fuzzy interior ideals in ordered semigroups, Lobachevskii J. Math. 21 (2006) 65–71.

[4] S. Lajos, $(m;k;n)$-ideals in semigroups, in: Notes on Semigroups II, Karl Marx Univ. Econ., Dept. Math. Budapest 1 (1976) 12–19.

[5] M.M. Krishna Rao, A study of generalization of bi-ideal, quasi-ideal and interior ideal of semigroup, Math. Morovica 22 (2) (2018) 103–115. https://doi.org/10.5937/MatMor1802103M

[6] M.M. Krishna Rao, Quasi-interior ideals and fuzzy quasi-interior ideals of $Γ$-semirings, Ann. Fuzzy Math. Inform. 18 (1) (2019) 31–43. https://doi.org/10.30948/afmi.2019.18.1.31

[7] M.M. Krishna Rao, Quasi-interior ideals and fuzzy quasi-interior ideals of semigroups, Ann. Fuzzy Math. Inform. 19 (2) (2020) 199–208. https://doi.org/10.30948/afmi.2020.19.2.199

[8] G. Szasz, Interior ideals in semigroups, in: Notes on Semigroups, Karl Marx Univ. Econ., Dept. Math. Budapest 5 (1977) 1–7.

[9] G. Szasz, Remark on interior ideals of semigroups, Studia Sci. Math. Hung. 16 (1981) 61–63.