Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2023_43_2_a2, author = {Cz\'edli, Gabor}, title = {Revisiting {Faigle} geometries from a perspective of semimodular lattices}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {207--222}, publisher = {mathdoc}, volume = {43}, number = {2}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2023_43_2_a2/} }
TY - JOUR AU - Czédli, Gabor TI - Revisiting Faigle geometries from a perspective of semimodular lattices JO - Discussiones Mathematicae. General Algebra and Applications PY - 2023 SP - 207 EP - 222 VL - 43 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2023_43_2_a2/ LA - en ID - DMGAA_2023_43_2_a2 ER -
Czédli, Gabor. Revisiting Faigle geometries from a perspective of semimodular lattices. Discussiones Mathematicae. General Algebra and Applications, Tome 43 (2023) no. 2, pp. 207-222. http://geodesic.mathdoc.fr/item/DMGAA_2023_43_2_a2/
[1] P. Crawley, R.P. Dilworth: Algebraic Theory of Lattices. Prentice Hall, 1973 ISBN: 0130222690, 9780130222695
[2] Czédli, G.: Representing homomorphisms of distributive lattices as restrictions of congruences of rectangular lattices, Algebra Universalis 67, 313–345 (2012) DOI: 10.1007/s00012-012-0190-3
[3] Czédli, G.: Slim patch lattices as absolute retracts and maximal lattices. http://arxiv.org/abs/2105.12868
[4] Czédli, G., Grätzer, G.: Planar semimodular lattices: structure and diagrams. Chapter 3 in: Grätzer, G., Wehrung, F. (eds.), Lattice Theory: Special Topics and Applications, pp 91–130, Birkhäuser, Basel (2014) DOI: 10.1007/978-3-319-06413-0\textunderscore 3
[5] Czédli, G., Kurusa, Á.: A convex combinatorial property of compact sets in the plane and its roots in lattice theory. Categories and General Algebraic Structures with Applications \tbf{11}, 57–92 (2019)\quad http://cgasa.sbu.ac.ir/article\textunderscore82639.html DOI: 10.29252/CGASA.11.1.57
[6] Czédli, G., Schmidt, E.T.: A cover-preserving embedding of semimodular lattices into geometric lattices. Advances in Mathematics \tbf{225}, 2455–2463 (2010) DOI: 10.1016/j.aim.2010.05.001
[7] Czédli, G., Schmidt, E.T.: Slim semimodular lattices. I. A visual approach. Order \tbf{29}, 481–497 (2012) DOI: 10.1007/s11083-011-9215-3
[8] Dilworth, R.P.: A decomposition theorem for partially ordered sets. Ann. of Math. \tbf{(2) 51}, 161–166 (1950) DOI:10.1007/978-0-8176-4842-8\textunderscore10
[9] Faigle, U.: Geometries on partially ordered sets. J. Combinatorial Theory B \tbf{28}, 26–51 (1980) DOI: 10.1016/0095-8956(80)90054-4
[10] Grätzer, G., Kiss, E. W.: A construction of semimodular lattices. Order \tbf{2}, 351–365 (1986) DOI: 10.1007/BF00367424
[11] Grätzer, G., Knapp, E.: Notes on planar semimodular lattices. I. Construction. Acta Sci.\ Math.\ (Szeged) \tbf{73}, 445–462 (2007)
[12] Grätzer, G., Knapp, E.: Notes on planar semimodular lattices. III. Congruences of rectangular lattices. Acta Sci. Math. (Szeged), \tbf{75}, 29–48 (2009)
[13] Grätzer, G., Schmidt, E. T.: The strong independence theorem for automorphism groups and congruence lattices of finite lattices. Beiträge Algebra Geom. \tbf{36}, 97–108 (1995)
[14] Kelly, D., Rival, I.: Planar lattices. Canadian J. Math. \tbf{27}, 636–665 (1975) DOI: 10.4153/CJM-1975-074-0
[15] Quackenbush, R. W.: Review on Faigle \cite{faigle}. MathSciNet, MR565509 (81m:05054)
[16] Skublics, B.: Isometrical embeddings of lattices into geometric lattices. Order 30, 797–806 (2013) DOI: 10.1007/s11083-012-9277-x
[17] Stern, M.: Semimodular Lattices –- Theory and Application, Cambridge Univ. Press, 1999 DOI: 10.1017/CBO9780511665578
[18] Wild, M.: Cover preserving embedding of modular lattices into partition lattices. Discrete Math. \tbf{112}, 207–244 (1993) DOI: 10.1016/0012-365X(93)90235-L