Distributive categories of coalgebras
Discussiones Mathematicae. General Algebra and Applications, Tome 43 (2023) no. 2, pp. 363-373.

Voir la notice de l'article provenant de la source Library of Science

We prove that the category of coalgebras for an endo-functor F is distributive or extensive, provided that F preserves pullbacks along monomorphisms and the underlying category is distributive or extensive.
Keywords: coalgebra, coproduct, distributive category, pullback
@article{DMGAA_2023_43_2_a12,
     author = {Mavoungou, Jean-Paul},
     title = {Distributive categories of coalgebras},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {363--373},
     publisher = {mathdoc},
     volume = {43},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2023_43_2_a12/}
}
TY  - JOUR
AU  - Mavoungou, Jean-Paul
TI  - Distributive categories of coalgebras
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2023
SP  - 363
EP  - 373
VL  - 43
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2023_43_2_a12/
LA  - en
ID  - DMGAA_2023_43_2_a12
ER  - 
%0 Journal Article
%A Mavoungou, Jean-Paul
%T Distributive categories of coalgebras
%J Discussiones Mathematicae. General Algebra and Applications
%D 2023
%P 363-373
%V 43
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2023_43_2_a12/
%G en
%F DMGAA_2023_43_2_a12
Mavoungou, Jean-Paul. Distributive categories of coalgebras. Discussiones Mathematicae. General Algebra and Applications, Tome 43 (2023) no. 2, pp. 363-373. http://geodesic.mathdoc.fr/item/DMGAA_2023_43_2_a12/

[1] J. Adámek, Introduction to coalgebra, Theory and Application of Categories, 14 (2005) 157–199.

[2] J. Adámek, H. Herrlich and G.E. Strecker, Abstract and Concrete Categories (Wiley-Interscience, 1990).

[3] A. Carboni, S. Lack and R.F. C Walters, Introduction to extensive and distributive categories, J. Pure Appl. Alg. 84 (2) (1993) 145–158. https://doi.org/10.1016/0022-4049(93)90035-R

[4] J.R.B. Cockett, Introduction to distributive categories, Math. Structure Comput. Sci. 3 (3) (1993) 277–307. https://doi.org/10.1017/S0960129500000232

[5] M. Barr, Terminal coalgebras in well-founded set theory, Theoret. Comput. Sci. 114 (2) (1993) 299–315. https://doi.org/10.1016/0304-3975(93)90076-6

[6] H.P. Gumm and T. Schröder, Coalgebraic structure from weak limit preserving functors, Elect. Notes Theoret. Comput. Sci. 33 (2000) 113–133. https://doi.org/10.1016/S1571-0661(05)80346-9

[7] H.P. Gumm, J. Hughes and T. Schröder, Distributivity of classes of coalgebras, Theoret. Comput. Sci. 308 (2003) 131–143. https://doi.org/10.1016/S0304-3975(02)00582-0

[8] H.P. Gumm and T. Schröder, Products of coalgebras, Algebra Univ. 46 (2001) 163–185. https://doi.org/10.1007/PL00000334

[9] P. Johnstone, J. Power, T. Tsujishita, H. Watanabe and J. Worrell, On the structure of categories of coalgebras, Theoret. Comput. Sci. 260 (2001) 87–117. https://doi.org/10.1016/S0304-3975(00)00124-9

[10] S. Mac Lane, Categories for the working mathematician, Graduate Texts in Math. 5 (Springer-Verlag, 1971). https://doi.org/10.1007/978-1-4612-9839-7

[11] J.J.M.M. Rutten, Universal coalgebra: a theory of systems, Theoret. Comput. Sci. 249 (2000) 3–80. https://doi.org/10.1016/S0304-3975(00)00056-6

[12] H. Schubert, Categories (Springer-Verlag, Berlin, Heidelberg and New York, 1972).