The automorphisms having the extension property in a category of a finite direct sum of cyclic modules
Discussiones Mathematicae. General Algebra and Applications, Tome 43 (2023) no. 1, pp. 111-120.

Voir la notice de l'article provenant de la source Library of Science

It is well known that the problem of characterizing the automorphisms, in the category of abelian groups, with the extension property is resolved [1]. But in other categories, it is a very difficult problem. This paper extends the result in [1] to a category of modules. Let A be a unique factorization integral domain (UFD). Consider M a direct finite sum of cyclic modules over A where A n n_A(M)={0} and α an automorphism of M. We give a necessary and sufficient condition such that α satisfies the extension property.
Keywords: integral domain, factorization, module, automorphism, torsion and torsion-free
@article{DMGAA_2023_43_1_a9,
     author = {Abdelalim, Seddik and Chaichaa, Abdelhak and El garn, Mostafa},
     title = {The automorphisms having the extension property in a category of a finite direct sum of cyclic modules},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {111--120},
     publisher = {mathdoc},
     volume = {43},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a9/}
}
TY  - JOUR
AU  - Abdelalim, Seddik
AU  - Chaichaa, Abdelhak
AU  - El garn, Mostafa
TI  - The automorphisms having the extension property in a category of a finite direct sum of cyclic modules
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2023
SP  - 111
EP  - 120
VL  - 43
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a9/
LA  - en
ID  - DMGAA_2023_43_1_a9
ER  - 
%0 Journal Article
%A Abdelalim, Seddik
%A Chaichaa, Abdelhak
%A El garn, Mostafa
%T The automorphisms having the extension property in a category of a finite direct sum of cyclic modules
%J Discussiones Mathematicae. General Algebra and Applications
%D 2023
%P 111-120
%V 43
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a9/
%G en
%F DMGAA_2023_43_1_a9
Abdelalim, Seddik; Chaichaa, Abdelhak; El garn, Mostafa. The automorphisms having the extension property in a category of a finite direct sum of cyclic modules. Discussiones Mathematicae. General Algebra and Applications, Tome 43 (2023) no. 1, pp. 111-120. http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a9/

[1] S. Abdelalim and H. Essannouni, Characterization of the automorphisms of an Abelian group having the extension property, Portugaliae Math. (Nova) 59 (3) (2002) 325–333. https://doi.org/org/10.1016/j.jtusci.2015.02.009

[2] S. Abdelalim, A. Chaicha and M. El garn, The Extension Property in the Category of Direct Sum of Cyclic Torsion-Free Modules over a BFD, in: The Moroccan Andalusian Meeting on Algebras and their Applications 2018, Ap, Springer, Cham. (Ed(s)), (2020) 313–323. https://doi.org/org/10.1007/978-3-030-35256-1-17

[3] M. Barry, These: Caractérisation des anneaux commutatifs pour lesquels les modules vérifant (I)} sont de types finis, Dissertation Doctorale (Université Cheikh anta diop de Dakar, Faculté des Sciences et Techniques, Département de Mathématiques et Informatique, 1998) 22–22.

[4] L. Ben Yakoub, Sur un Théorème de Schupp, Portugaliae Math. (Nova) 51 (2) (1994) 231–233. https://doi.org/eudml.org/doc/47203

[5] E. Kunz, Introduction to commutative algebra and algebraic geometry (Springer Science & Business Media, 2013). https://doi.org/10.1007/978-1-4614-5987-3

[6] M.R. Pettet, On Inner Automorphisms of Finite Groups, Proceedings of the American Mathematical Society 106 (1) (1989) 87–90. https://doi.org/org/10.1090/S0002-9939-1989-0968625-8

[7] P.E. Schupp, A characterizing of inner automorphisms, in: Proc. Amer. Math. Soc. 101 (2) (1987) 226–228. https://doi.org/10.1090/S0002-9939-1987-0902532-X