Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2023_43_1_a9, author = {Abdelalim, Seddik and Chaichaa, Abdelhak and El garn, Mostafa}, title = {The automorphisms having the extension property in a category of a finite direct sum of cyclic modules}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {111--120}, publisher = {mathdoc}, volume = {43}, number = {1}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a9/} }
TY - JOUR AU - Abdelalim, Seddik AU - Chaichaa, Abdelhak AU - El garn, Mostafa TI - The automorphisms having the extension property in a category of a finite direct sum of cyclic modules JO - Discussiones Mathematicae. General Algebra and Applications PY - 2023 SP - 111 EP - 120 VL - 43 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a9/ LA - en ID - DMGAA_2023_43_1_a9 ER -
%0 Journal Article %A Abdelalim, Seddik %A Chaichaa, Abdelhak %A El garn, Mostafa %T The automorphisms having the extension property in a category of a finite direct sum of cyclic modules %J Discussiones Mathematicae. General Algebra and Applications %D 2023 %P 111-120 %V 43 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a9/ %G en %F DMGAA_2023_43_1_a9
Abdelalim, Seddik; Chaichaa, Abdelhak; El garn, Mostafa. The automorphisms having the extension property in a category of a finite direct sum of cyclic modules. Discussiones Mathematicae. General Algebra and Applications, Tome 43 (2023) no. 1, pp. 111-120. http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a9/
[1] S. Abdelalim and H. Essannouni, Characterization of the automorphisms of an Abelian group having the extension property, Portugaliae Math. (Nova) 59 (3) (2002) 325–333. https://doi.org/org/10.1016/j.jtusci.2015.02.009
[2] S. Abdelalim, A. Chaicha and M. El garn, The Extension Property in the Category of Direct Sum of Cyclic Torsion-Free Modules over a BFD, in: The Moroccan Andalusian Meeting on Algebras and their Applications 2018, Ap, Springer, Cham. (Ed(s)), (2020) 313–323. https://doi.org/org/10.1007/978-3-030-35256-1-17
[3] M. Barry, These: Caractérisation des anneaux commutatifs pour lesquels les modules vérifant (I)} sont de types finis, Dissertation Doctorale (Université Cheikh anta diop de Dakar, Faculté des Sciences et Techniques, Département de Mathématiques et Informatique, 1998) 22–22.
[4] L. Ben Yakoub, Sur un Théorème de Schupp, Portugaliae Math. (Nova) 51 (2) (1994) 231–233. https://doi.org/eudml.org/doc/47203
[5] E. Kunz, Introduction to commutative algebra and algebraic geometry (Springer Science & Business Media, 2013). https://doi.org/10.1007/978-1-4614-5987-3
[6] M.R. Pettet, On Inner Automorphisms of Finite Groups, Proceedings of the American Mathematical Society 106 (1) (1989) 87–90. https://doi.org/org/10.1090/S0002-9939-1989-0968625-8
[7] P.E. Schupp, A characterizing of inner automorphisms, in: Proc. Amer. Math. Soc. 101 (2) (1987) 226–228. https://doi.org/10.1090/S0002-9939-1987-0902532-X