On right inverse ordered semigroups
Discussiones Mathematicae. General Algebra and Applications, Tome 43 (2023) no. 1, pp. 75-83.

Voir la notice de l'article provenant de la source Library of Science

A regular ordered semigroup S is called right inverse if every principal left ideal of S is generated by an ℛ-unique positive element of it. We prove that a regular ordered semigroup is right inverse if and only if any two inverses of an element a∈ S are ℛ-related. Furthermore the class of right Clifford ordered semigroups have been characterized by the class of right inverse ordered semigroups.
Keywords: ordered regular, ordered inverse, positive element, completely regular, right inverse
@article{DMGAA_2023_43_1_a6,
     author = {Jamadar, Amlan and Hansda, Kalyan},
     title = {On right inverse ordered semigroups},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {75--83},
     publisher = {mathdoc},
     volume = {43},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a6/}
}
TY  - JOUR
AU  - Jamadar, Amlan
AU  - Hansda, Kalyan
TI  - On right inverse ordered semigroups
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2023
SP  - 75
EP  - 83
VL  - 43
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a6/
LA  - en
ID  - DMGAA_2023_43_1_a6
ER  - 
%0 Journal Article
%A Jamadar, Amlan
%A Hansda, Kalyan
%T On right inverse ordered semigroups
%J Discussiones Mathematicae. General Algebra and Applications
%D 2023
%P 75-83
%V 43
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a6/
%G en
%F DMGAA_2023_43_1_a6
Jamadar, Amlan; Hansda, Kalyan. On right inverse ordered semigroups. Discussiones Mathematicae. General Algebra and Applications, Tome 43 (2023) no. 1, pp. 75-83. http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a6/

[1] A.K. Bhuniya and K. Hansda, Completely regular and Clifford ordered semigroups, Afrika Matematika 31 (2020) 1029–1045. https://doi.org/10.1007/s13370-020-00778-1

[2] G.L. Bailes, Right inverse semigroups, J. Algebra 26 (1973) 492–507. https://doi.org/10.1016/0021-8693(73)90010-0

[3] N. Kehayopulu, Remark in ordered semigroups, Math. Japonica 35 (1990) 1061–1063.

[4] N. Kehayopulu, Ideals and Green's relations in ordered semigroups, Int. J. Math. and Math. Sci. (2006) 1–8. https://doi.org/10.1155/IJMMS/2006/61286

[5] S.K. Lee and Y.I. Kwon, On completely regular and quasi-completely regular ordered semigroups, Sci. Math. 2 (1998) 247–251.

[6] T. Saito, Ordered idempotent semigroups, J. Math. Soc. Japan 14 (2) (1962) 150–169.

[7] T. Saito, Ordered inverse semigroups, Trans. Amer. Math. Soc 153 (1971) 99–138. https://doi.org/10.2307/1995550

[8] P.S. Venkatesan, Right (left) inverse semigroups, J. Algebra 31 (1974) 209–217. https://doi.org/10.1016/0021-8693(74)90064-7

[9] P.S. Venkatesan, On right unipotent semigroups, Pacific J. Math. 63 (1976) 555–561. https://doi.org/10.2140/pjm.1976.63.555

[10] P.S. Venkatesan, On right unipotent semigroups II}, Glasgow Math. J. 19 (1978) 63–68. https://doi.org/10.1017/S0017089500003384

[11] P.S. Venkatesan, Bisimple left inverse semigroups, Semigroup Forum 4 (1972) 34–45. https://doi.org/10.1007/BF02570767