On prime rings with involution and generalized derivations
Discussiones Mathematicae. General Algebra and Applications, Tome 43 (2023) no. 1, pp. 31-39.

Voir la notice de l'article provenant de la source Library of Science

In this note we investigate some commutativity conditions on prime rings with involutions by using some generalized derivations. We have provided a counter example as well.
Keywords: $*$-ideals, involution, $*$-prime rings, derivations and generalized derivations
@article{DMGAA_2023_43_1_a2,
     author = {Al-omary, Radwan Mohammed and Nauman, S. Khalid},
     title = {On prime rings with involution and generalized derivations},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {31--39},
     publisher = {mathdoc},
     volume = {43},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a2/}
}
TY  - JOUR
AU  - Al-omary, Radwan Mohammed
AU  - Nauman, S. Khalid
TI  - On prime rings with involution and generalized derivations
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2023
SP  - 31
EP  - 39
VL  - 43
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a2/
LA  - en
ID  - DMGAA_2023_43_1_a2
ER  - 
%0 Journal Article
%A Al-omary, Radwan Mohammed
%A Nauman, S. Khalid
%T On prime rings with involution and generalized derivations
%J Discussiones Mathematicae. General Algebra and Applications
%D 2023
%P 31-39
%V 43
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a2/
%G en
%F DMGAA_2023_43_1_a2
Al-omary, Radwan Mohammed; Nauman, S. Khalid. On prime rings with involution and generalized derivations. Discussiones Mathematicae. General Algebra and Applications, Tome 43 (2023) no. 1, pp. 31-39. http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a2/

[1] R.M. Al-omary and S.K. Nauman, Generalized derivations on prime rings satisfying certain identities, Commun. Korean Math. Soc. 36 (2) (2021) 229–238. https://doi.org/10.4134/CKMS.c200227

[2] M. Ashraf and M.A Siddeeque, Certain differential identities in prime rings with involurion, Miskolc Math. Notes 16 (1) (2015) 33–44. https://doi.org/10.18514/MMN.2015.1089

[3] M. Ashraf and M.R. Jamal, Generalized derivations on *-prime rings, Kyungpook Math. J. 58 (2018) 484–488. https://doi.org/10.5666/KMJ.2018.58.3.481

[4] K. Emine and N. Rehman, Notes on generalized derivations of *-prime rings, Miskolc Math. Notes 1 (1) (2014) 117–123. https://doi.org/10.18514/MMN.2014.779

[5] S.K. Nauman, N. Rehman and R.M. Al-Omary, Lie ideals, Morita context and generalized (α, β)-derivations, Acta Math. Sci. 33 (4) (2011) 1059–1070. https://doi.org/10.1016/S0252-9602(13)60063-6

[6] L. Oukhtite and S. Salhi, Commutativity of σ-prime rings, Glasnik Mathematicki 41 (2006) 57–64. https://doi.org/10.3336/gm.41.1.05

[7] L. Oukhtite and S. Salhi, Derivations and commutativity of σ-prime rings, Int. J. Contept. Math. Sci. 1 (2006) 439–448.

[8] L. Oukhtite, S. Salhi and L. Taoufiq, Commutativity conditions on derivations and Lie ideals in σ-prime rings, Beitrage. Algebra. Geom. 51 (1) (2010) 275–282.

[9] M.R. Khan, D. Arora and M.A. Khan, σ-ideals and generalized derivation in σ-prime rings, Bol. Soc. Paran. Mat. 31 (2) (2012) 113–119. https://doi.org/10.5269/bspm.v31i2.12119

[10] N. Rehman and O. Golbasi, Notes on (α, β)-generalized derivations of *-prime rings, Palestine J. Math. 5 (2) (2016) 258–269.

[11] N. Rehman, R.M. Al-Omary and A.Z. Ansari, On Lie ideals of prime rings with generalized derivations, Bol. Soc. Mat. Mex. 21 (1) (2015) 19–26. https://doi.org/10.1007/s40590-014-0029-3

[12] N. Rehman and R.M. Al-Omary, On Commutativity of 2-torsion free *-prime rings with Generalized Derivations, Mathematica 53 (2) (2011) 177–180.

[13] B.H. Shafee and S.K. Nauman, On extensions of right symmetric rings without identity, APM 4 (2014) 665–673. https://doi.org/10.4236/apm.2014. 412075

[14] H. Shuliang, Generalized derivations of σ-prime rings, Int. J. Algebra 18 (2) (2008) 867–873.