Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2023_43_1_a2, author = {Al-omary, Radwan Mohammed and Nauman, S. Khalid}, title = {On prime rings with involution and generalized derivations}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {31--39}, publisher = {mathdoc}, volume = {43}, number = {1}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a2/} }
TY - JOUR AU - Al-omary, Radwan Mohammed AU - Nauman, S. Khalid TI - On prime rings with involution and generalized derivations JO - Discussiones Mathematicae. General Algebra and Applications PY - 2023 SP - 31 EP - 39 VL - 43 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a2/ LA - en ID - DMGAA_2023_43_1_a2 ER -
%0 Journal Article %A Al-omary, Radwan Mohammed %A Nauman, S. Khalid %T On prime rings with involution and generalized derivations %J Discussiones Mathematicae. General Algebra and Applications %D 2023 %P 31-39 %V 43 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a2/ %G en %F DMGAA_2023_43_1_a2
Al-omary, Radwan Mohammed; Nauman, S. Khalid. On prime rings with involution and generalized derivations. Discussiones Mathematicae. General Algebra and Applications, Tome 43 (2023) no. 1, pp. 31-39. http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a2/
[1] R.M. Al-omary and S.K. Nauman, Generalized derivations on prime rings satisfying certain identities, Commun. Korean Math. Soc. 36 (2) (2021) 229–238. https://doi.org/10.4134/CKMS.c200227
[2] M. Ashraf and M.A Siddeeque, Certain differential identities in prime rings with involurion, Miskolc Math. Notes 16 (1) (2015) 33–44. https://doi.org/10.18514/MMN.2015.1089
[3] M. Ashraf and M.R. Jamal, Generalized derivations on *-prime rings, Kyungpook Math. J. 58 (2018) 484–488. https://doi.org/10.5666/KMJ.2018.58.3.481
[4] K. Emine and N. Rehman, Notes on generalized derivations of *-prime rings, Miskolc Math. Notes 1 (1) (2014) 117–123. https://doi.org/10.18514/MMN.2014.779
[5] S.K. Nauman, N. Rehman and R.M. Al-Omary, Lie ideals, Morita context and generalized (α, β)-derivations, Acta Math. Sci. 33 (4) (2011) 1059–1070. https://doi.org/10.1016/S0252-9602(13)60063-6
[6] L. Oukhtite and S. Salhi, Commutativity of σ-prime rings, Glasnik Mathematicki 41 (2006) 57–64. https://doi.org/10.3336/gm.41.1.05
[7] L. Oukhtite and S. Salhi, Derivations and commutativity of σ-prime rings, Int. J. Contept. Math. Sci. 1 (2006) 439–448.
[8] L. Oukhtite, S. Salhi and L. Taoufiq, Commutativity conditions on derivations and Lie ideals in σ-prime rings, Beitrage. Algebra. Geom. 51 (1) (2010) 275–282.
[9] M.R. Khan, D. Arora and M.A. Khan, σ-ideals and generalized derivation in σ-prime rings, Bol. Soc. Paran. Mat. 31 (2) (2012) 113–119. https://doi.org/10.5269/bspm.v31i2.12119
[10] N. Rehman and O. Golbasi, Notes on (α, β)-generalized derivations of *-prime rings, Palestine J. Math. 5 (2) (2016) 258–269.
[11] N. Rehman, R.M. Al-Omary and A.Z. Ansari, On Lie ideals of prime rings with generalized derivations, Bol. Soc. Mat. Mex. 21 (1) (2015) 19–26. https://doi.org/10.1007/s40590-014-0029-3
[12] N. Rehman and R.M. Al-Omary, On Commutativity of 2-torsion free *-prime rings with Generalized Derivations, Mathematica 53 (2) (2011) 177–180.
[13] B.H. Shafee and S.K. Nauman, On extensions of right symmetric rings without identity, APM 4 (2014) 665–673. https://doi.org/10.4236/apm.2014. 412075
[14] H. Shuliang, Generalized derivations of σ-prime rings, Int. J. Algebra 18 (2) (2008) 867–873.