A pre-period of a finite distributive lattice
Discussiones Mathematicae. General Algebra and Applications, Tome 43 (2023) no. 1, pp. 141-148

Voir la notice de l'article provenant de la source Library of Science

The notion of a pre-preriod of a finite bounded distributive lattice (BDL) A is defined by means of the notion of a pre-period of a finite connected monounary algebra: it is the maximum value of the pre-period of an endomorphism and 0-fixing connected mapping of A to A. The main result is that the pre-period of any finite BDL is less than or equal to the length of the lattice; also, necessary and sufficient conditions under which it is equal to the length of the lattice, are shown.
Keywords: distributive lattice, pre-period, connected unary operation, BDLC-algebra
@article{DMGAA_2023_43_1_a12,
     author = {Chotwattakawanit, Udom and Charoenpol, Aveya},
     title = {A pre-period of a finite distributive lattice},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {141--148},
     publisher = {mathdoc},
     volume = {43},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a12/}
}
TY  - JOUR
AU  - Chotwattakawanit, Udom
AU  - Charoenpol, Aveya
TI  - A pre-period of a finite distributive lattice
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2023
SP  - 141
EP  - 148
VL  - 43
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a12/
LA  - en
ID  - DMGAA_2023_43_1_a12
ER  - 
%0 Journal Article
%A Chotwattakawanit, Udom
%A Charoenpol, Aveya
%T A pre-period of a finite distributive lattice
%J Discussiones Mathematicae. General Algebra and Applications
%D 2023
%P 141-148
%V 43
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a12/
%G en
%F DMGAA_2023_43_1_a12
Chotwattakawanit, Udom; Charoenpol, Aveya. A pre-period of a finite distributive lattice. Discussiones Mathematicae. General Algebra and Applications, Tome 43 (2023) no. 1, pp. 141-148. http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a12/