A pre-period of a finite distributive lattice
Discussiones Mathematicae. General Algebra and Applications, Tome 43 (2023) no. 1, pp. 141-148
Voir la notice de l'article provenant de la source Library of Science
The notion of a pre-preriod of a finite bounded distributive lattice (BDL) A is defined by means of the notion of a pre-period of a finite connected monounary algebra: it is the maximum value of the pre-period of an endomorphism and 0-fixing connected mapping of A to A. The main result is that the pre-period of any finite BDL is less than or equal to the length of the lattice; also, necessary and sufficient conditions under which it is equal to the length of the lattice, are shown.
Keywords:
distributive lattice, pre-period, connected unary operation, BDLC-algebra
@article{DMGAA_2023_43_1_a12,
author = {Chotwattakawanit, Udom and Charoenpol, Aveya},
title = {A pre-period of a finite distributive lattice},
journal = {Discussiones Mathematicae. General Algebra and Applications},
pages = {141--148},
publisher = {mathdoc},
volume = {43},
number = {1},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a12/}
}
TY - JOUR AU - Chotwattakawanit, Udom AU - Charoenpol, Aveya TI - A pre-period of a finite distributive lattice JO - Discussiones Mathematicae. General Algebra and Applications PY - 2023 SP - 141 EP - 148 VL - 43 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a12/ LA - en ID - DMGAA_2023_43_1_a12 ER -
%0 Journal Article %A Chotwattakawanit, Udom %A Charoenpol, Aveya %T A pre-period of a finite distributive lattice %J Discussiones Mathematicae. General Algebra and Applications %D 2023 %P 141-148 %V 43 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a12/ %G en %F DMGAA_2023_43_1_a12
Chotwattakawanit, Udom; Charoenpol, Aveya. A pre-period of a finite distributive lattice. Discussiones Mathematicae. General Algebra and Applications, Tome 43 (2023) no. 1, pp. 141-148. http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a12/