A pre-period of a finite distributive lattice
Discussiones Mathematicae. General Algebra and Applications, Tome 43 (2023) no. 1, pp. 141-148.

Voir la notice de l'article provenant de la source Library of Science

The notion of a pre-preriod of a finite bounded distributive lattice (BDL) A is defined by means of the notion of a pre-period of a finite connected monounary algebra: it is the maximum value of the pre-period of an endomorphism and 0-fixing connected mapping of A to A. The main result is that the pre-period of any finite BDL is less than or equal to the length of the lattice; also, necessary and sufficient conditions under which it is equal to the length of the lattice, are shown.
Keywords: distributive lattice, pre-period, connected unary operation, BDLC-algebra
@article{DMGAA_2023_43_1_a12,
     author = {Chotwattakawanit, Udom and Charoenpol, Aveya},
     title = {A pre-period of a finite distributive lattice},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {141--148},
     publisher = {mathdoc},
     volume = {43},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a12/}
}
TY  - JOUR
AU  - Chotwattakawanit, Udom
AU  - Charoenpol, Aveya
TI  - A pre-period of a finite distributive lattice
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2023
SP  - 141
EP  - 148
VL  - 43
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a12/
LA  - en
ID  - DMGAA_2023_43_1_a12
ER  - 
%0 Journal Article
%A Chotwattakawanit, Udom
%A Charoenpol, Aveya
%T A pre-period of a finite distributive lattice
%J Discussiones Mathematicae. General Algebra and Applications
%D 2023
%P 141-148
%V 43
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a12/
%G en
%F DMGAA_2023_43_1_a12
Chotwattakawanit, Udom; Charoenpol, Aveya. A pre-period of a finite distributive lattice. Discussiones Mathematicae. General Algebra and Applications, Tome 43 (2023) no. 1, pp. 141-148. http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a12/

[1] A. Charoenpol and C. Ratanaprasert, A distributive lattice-based algebra : the BDLC, Far East J. Math. Sci. (FJMS) 100 (2016) 135–145. https://doi.org/10.17654/MS100010135

[2] A. Charoenpol and C. Ratanaprasert, All Subdirectly Irreducible BDLC-algebras, Far East J. Math. Sci. (FJMS) 100 (2016) 477–490. https://doi.org/10.17654/MS100030477

[3] K. Denecke and S.L. Wismath, Universal algebra and applications in theoretical computer science (Chapman & Hall, CRC Press, Boca Raton, London, New York, Washington DC, 2002).

[4] E. Halušková, Strong endomorphism kernel property for monounary algebras, Math. Bohemica 143 (2017) 1–11.

[5] E. Halušková, Some monounary algebras with EKP, Math. Bohemica 145 (2019) 1–14. https://doi.org/10.21136/MB.2017.0056-16

[6] D. Jakubíková-Studenovská, Homomorphism order of connected monounary algebras, Order 38 (2021) 257–269. https://doi.org/10.1007/s11083-020-09539-y

[7] D. Jakubíková-Studenovská and J. Pócs, Monounary algebras (P.J. Šafárik Univ. Košice, Košice, 2009).

[8] D. Jakubíková-Studenovská and K. Potpinková, The endomorphism spectrum of a monounary algebra, Math. Slovaca 64 (2014) 675–690. https://doi.org/10.2478/s12175-014-0233-7

[9] B. Jónsson, Topics in Universal Algebra (Lecture Notes in Mathematics 250, Springer, Berlin, 1972).

[10] M. Novotná, O. Kopeček and J. Chvalina, Homomorphic Transformations: Why and possible ways to How (Masaryk University, Brno, 2012).

[11] J. Pitkethly and B. Davey, Dualisability: Unary Algebras and Beyond (Advances in Mathe-matics 9, Springer, New York, 2005).

[12] B.V. Popov, O.V. Kovaleva, On a Characterization of Monounary Algebras by their Endomorphism Semigroups, Semigroup Forum 73 (2006) 444–456. https://doi.org/10.1007/s00233-006-0635-0

[13] I. Pozdnyakova, Semigroups of endomorphisms of some infinite monounary algebras, J. Math. Sci. 190 (2013). https://doi.org/10.1007/s10958-013-1278-9

[14] C. Ratanaprasert and K. Denecke, Unary operations with long pre-periods, Discrete Math. 308 (2008) 4998–5005. https://doi.org/10.1142/S1793557109000170

[15] H. Yoeli, Subdirectly irreducible unary algebra, Math. Monthly 74 (1967) 957–960. https://doi.org/10.2307/2315275

[16] D. Zupnik, Cayley functions, Semigroup Forum 3 (1972) 349–358. https://doi.org/10.1007/BF02572972