Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2023_43_1_a10, author = {Sambasiva Rao, M.}, title = {$\sigma$-filters of commutative $BE$-algebras}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {121--134}, publisher = {mathdoc}, volume = {43}, number = {1}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a10/} }
TY - JOUR AU - Sambasiva Rao, M. TI - $\sigma$-filters of commutative $BE$-algebras JO - Discussiones Mathematicae. General Algebra and Applications PY - 2023 SP - 121 EP - 134 VL - 43 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a10/ LA - en ID - DMGAA_2023_43_1_a10 ER -
Sambasiva Rao, M. $\sigma$-filters of commutative $BE$-algebras. Discussiones Mathematicae. General Algebra and Applications, Tome 43 (2023) no. 1, pp. 121-134. http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a10/
[1] S.S. Ahn, Y.H. Kim and J.M. Ko, Filters in commutative $BE$-algebras, Commun. Korean. Math. Soc. 27 (2) (2012) 233–242. https://doi.org/10.4134/CKMS.2012.27.2.233
[2] A. Borumand Saeid, A. Rezaei and R.A. Borzooei, Some types of filters in $BE$-algebras, Math. Comput. Sci. 7 (2013) 341–352. https://doi.org/10.1007/s11786-013-0157-6
[3] W.H. Cornish, O-ideals, congruences, sheaf representation of distributive lattices, Rev. Roum. Math. Pures et Appl. 22 (8) (1977) 1059–1067.
[4] K. Iseki and S. Tanaka, An introduction to the theory of $BCK$-algebras, Math. Japon. 23 (1) (1979) 1–6.
[5] H.S. Kim and Y.H. Kim, On $BE$-algebras, Sci. Math. Jpn. 66 (1) (2007) 113–116.
[6] B.L. Meng, On filters in $BE$-algebras, Sci. Math. Japon. (2010) 105–111. https://doi.org/10.32219/isms.71.2-201
[7] S. Rasouli, Generalized co-annihilators in residuated lattices, Annals of the University of Craiova, Mathematics and Computer Science Series 45 (2) (2019) 190–207.
[8] M. Sambasiva Rao, Prime filters of commutative $BE$-algebras, J. Appl. Math. Inf. 33 (5–6) (2015) 579–591. https://doi.org/10.14317/jami.2015.579
[9] V.V. Kumar and M.S. Rao, Dual annihilator filters of commutative $BE$-algebras, Asian-European J. Math. 10 (1) (2017) 1750013(11 pages). https://doi.org/10.1142/s1793557117500139
[10] V.V. Kumar and M.S. Rao and S.K. Vali, Regular filters of commutative $BE$-algebras, TWMS J. Appl. & Engg. Math. 11 (4) (2021) 1023–1035.
[11] V.V. Kumar and M.S. Rao, and S.K. Vali, Quasi-complemented $BE$-algebras, Discuss. Math. Gen. Algebra Appl. 41 (2021) 265–281. https://doi.org/10.2307/1996101
[12] A. Walendziak, On commutative $BE$-algebras, Sci. Math. Japon. (2008) 585–588. https://doi.org/10.32219/isms.69.2-281