n-Fold Fantastic and n-Fold Involutive Ideals in Bounded Commutative Residuated Lattices
Discussiones Mathematicae. General Algebra and Applications, Tome 42 (2022) no. 2, pp. 363-381.

Voir la notice de l'article provenant de la source Library of Science

In this paper, we introduce the concepts of n-fold obstinate ideals, n-fold normal ideals, n-fold fantastic ideals and n-fold involutive ideals in residuated lattices, state and prove some of their properties. Several characterizations of these notions are derived and the relations between those notions are investigated. Also, we construct the correspondence between the notions of n-fold ideal and n-fold filter in residuated lattices.
Keywords: residuated lattice, ideal, n-fold ideal, n-fold filter
@article{DMGAA_2022_42_2_a8,
     author = {Yinga, Fabrice Tchoua and Koguep Njionou, Blaise B. and Temgoua Alomo, Etienne R.},
     title = {n-Fold {Fantastic} and {n-Fold} {Involutive} {Ideals} in {Bounded} {Commutative} {Residuated} {Lattices}},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {363--381},
     publisher = {mathdoc},
     volume = {42},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2022_42_2_a8/}
}
TY  - JOUR
AU  - Yinga, Fabrice Tchoua
AU  - Koguep Njionou, Blaise B.
AU  - Temgoua Alomo, Etienne R.
TI  - n-Fold Fantastic and n-Fold Involutive Ideals in Bounded Commutative Residuated Lattices
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2022
SP  - 363
EP  - 381
VL  - 42
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2022_42_2_a8/
LA  - en
ID  - DMGAA_2022_42_2_a8
ER  - 
%0 Journal Article
%A Yinga, Fabrice Tchoua
%A Koguep Njionou, Blaise B.
%A Temgoua Alomo, Etienne R.
%T n-Fold Fantastic and n-Fold Involutive Ideals in Bounded Commutative Residuated Lattices
%J Discussiones Mathematicae. General Algebra and Applications
%D 2022
%P 363-381
%V 42
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2022_42_2_a8/
%G en
%F DMGAA_2022_42_2_a8
Yinga, Fabrice Tchoua; Koguep Njionou, Blaise B.; Temgoua Alomo, Etienne R. n-Fold Fantastic and n-Fold Involutive Ideals in Bounded Commutative Residuated Lattices. Discussiones Mathematicae. General Algebra and Applications, Tome 42 (2022) no. 2, pp. 363-381. http://geodesic.mathdoc.fr/item/DMGAA_2022_42_2_a8/

[1] A. Ahadpanah and L. Torkzadeh, Normal filter in residuated lattices, Le Matematiche 70 (2015) 81–92. https://doi.org/10.4418/2015.70.1.6

[2] R.A. Borzooei and A. Paad, Integral filters and integral BL-algebras, Italian J. Pure Appl. Math. 30 (2013) 303–316.

[3] R. Cretan and A. Jeflea, On the lattice of congruence filters of a residuated lattice, Annals of University of Craiova, Mathematics and Computer Science Series. 33 (2006) 174–188.

[4] F. Forouzesh, n-fold obstinate ideal in MV-algebras, New Math. Natural Comput. 12 (2016) 265–275. https://doi.org/10.1142/S1793005716500186

[5] M. Haveshki, B. Saeid and E. Eslami, Some types of filters in BL-algebras, Soft Comput. 10 (2006) 657–664. https://doi.org/10.1007/s00500-005-0534-4

[6] M. Haveshki and E. Eslami, n-fold filters in BL-algebra, Math. Log. Quart. 54 (2008) 176–186. https://doi.org/10.1002/malq.200710029

[7] M. Haveshki and M. Mohamadhasani, Folding theory applied to Rl-monoid, Annals of the University of Craiova, Mathematics and Computer Science Series 37 (2010) 9–17.

[8] A. Kadji, C. Lele, J.B. Nganou and M. Tonga, Folding theory applied to residuated lattices, Int. J. Math. and Math. Sci. 4 (2014) 1–12. https://doi.org/10.1155/2014/428940

[9] M. Kondo and W. Dudek, Filter theory of BL algebras, Soft Computing 12 (2009) 419–423. https://doi.org/10.1007/s00500-007-0178-7

[10] C. Lele and S. Moutari, On some computational algorithms for n-fold ideals in BCK-algebras, J. Appl. Math. Comput. 23 (2007) 369–383. https://doi.org/10.1007/BF02831984

[11] C. Lele and J.B. Nganou, MV-algebras derived from ideals in BL-algebras, Fuzzy Sets and Systems 218 (2013) 103–113. https://doi.org/10.1016/j.fss.2012.09.014

[12] C. Lele and J.B. Nganou, Pseudo-addidion and fuzzy ideal in BL-algebras, Annals Math. Inform. 8 (2014) 193–207.

[13] Y. Liu, Y. Qin, X. Qin and Y. Xu, Ideals and fuzzy ideals on residuated lattices, Int. J. Machine Learning and Cybernetics, 8 (2014) 239–253. https://doi.org/10.1007/s13042-014-0317-2

[14] S. Motamed and A.B. Saeid, n-fold obstinate filters in BL-algebras, Neural Comput. Appl. 20 (2011) 461–472. https://doi.org/10.1007/s00521-011-0548-z

[15] A. Paad and R.A. Borzooei, Generalization of integral filters in BL-algebras and n-fold integral BL-algebras, Africa Matematika 26 (2015) 1299–1311. https://doi.org/10.1007/s13370-014-0275-6

[16] A. Paad, n-Fold integral ideals and n-fold Boolean ideals in BL-algebras, Africa Matematika 28 (2017) 971–984. https://doi.org/10.1007/s13370-017-0497-5

[17] A. Paad, Folding theory of implicative and obstinate ideals in BL-algebras, Discuss. Math. Gen. Alg. and Appl. 38 (2018) 255–271. https://doi.org/10.7151/dmgaa.1295

[18] A.B. Saeid and S. Motamed, Some results in BL-algebras, Math. Logic Quarterly 55 (2009) 649–658. https://doi.org/10.1002/Malq.200910025

[19] Y.F. Tchoua, N.B.B. Koguep, A.E.R. Temgoua and C. Lele, n-fold boolean, implicative and integral ideals on bounded commutative residuated lattices, New Math. and Natural Comput. 15 (2019) 427–445. https://doi.org/10.1142/S1793005719500248

[20] Y. Yang and X. Xin, On chracterizations of BL-algebras via implicative ideals, Italian J. Pure and Appl. Math. 37 (2017) 493–506.

[21] O. Zahiri and H. Farahani, n-Fold filters of MTL-algebras, Africa Matematika 25 (2014) 1165–1178. https://doi.org/10.1007/s13370-013-0184-0