Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2022_42_2_a8, author = {Yinga, Fabrice Tchoua and Koguep Njionou, Blaise B. and Temgoua Alomo, Etienne R.}, title = {n-Fold {Fantastic} and {n-Fold} {Involutive} {Ideals} in {Bounded} {Commutative} {Residuated} {Lattices}}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {363--381}, publisher = {mathdoc}, volume = {42}, number = {2}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2022_42_2_a8/} }
TY - JOUR AU - Yinga, Fabrice Tchoua AU - Koguep Njionou, Blaise B. AU - Temgoua Alomo, Etienne R. TI - n-Fold Fantastic and n-Fold Involutive Ideals in Bounded Commutative Residuated Lattices JO - Discussiones Mathematicae. General Algebra and Applications PY - 2022 SP - 363 EP - 381 VL - 42 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2022_42_2_a8/ LA - en ID - DMGAA_2022_42_2_a8 ER -
%0 Journal Article %A Yinga, Fabrice Tchoua %A Koguep Njionou, Blaise B. %A Temgoua Alomo, Etienne R. %T n-Fold Fantastic and n-Fold Involutive Ideals in Bounded Commutative Residuated Lattices %J Discussiones Mathematicae. General Algebra and Applications %D 2022 %P 363-381 %V 42 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGAA_2022_42_2_a8/ %G en %F DMGAA_2022_42_2_a8
Yinga, Fabrice Tchoua; Koguep Njionou, Blaise B.; Temgoua Alomo, Etienne R. n-Fold Fantastic and n-Fold Involutive Ideals in Bounded Commutative Residuated Lattices. Discussiones Mathematicae. General Algebra and Applications, Tome 42 (2022) no. 2, pp. 363-381. http://geodesic.mathdoc.fr/item/DMGAA_2022_42_2_a8/
[1] A. Ahadpanah and L. Torkzadeh, Normal filter in residuated lattices, Le Matematiche 70 (2015) 81–92. https://doi.org/10.4418/2015.70.1.6
[2] R.A. Borzooei and A. Paad, Integral filters and integral BL-algebras, Italian J. Pure Appl. Math. 30 (2013) 303–316.
[3] R. Cretan and A. Jeflea, On the lattice of congruence filters of a residuated lattice, Annals of University of Craiova, Mathematics and Computer Science Series. 33 (2006) 174–188.
[4] F. Forouzesh, n-fold obstinate ideal in MV-algebras, New Math. Natural Comput. 12 (2016) 265–275. https://doi.org/10.1142/S1793005716500186
[5] M. Haveshki, B. Saeid and E. Eslami, Some types of filters in BL-algebras, Soft Comput. 10 (2006) 657–664. https://doi.org/10.1007/s00500-005-0534-4
[6] M. Haveshki and E. Eslami, n-fold filters in BL-algebra, Math. Log. Quart. 54 (2008) 176–186. https://doi.org/10.1002/malq.200710029
[7] M. Haveshki and M. Mohamadhasani, Folding theory applied to Rl-monoid, Annals of the University of Craiova, Mathematics and Computer Science Series 37 (2010) 9–17.
[8] A. Kadji, C. Lele, J.B. Nganou and M. Tonga, Folding theory applied to residuated lattices, Int. J. Math. and Math. Sci. 4 (2014) 1–12. https://doi.org/10.1155/2014/428940
[9] M. Kondo and W. Dudek, Filter theory of BL algebras, Soft Computing 12 (2009) 419–423. https://doi.org/10.1007/s00500-007-0178-7
[10] C. Lele and S. Moutari, On some computational algorithms for n-fold ideals in BCK-algebras, J. Appl. Math. Comput. 23 (2007) 369–383. https://doi.org/10.1007/BF02831984
[11] C. Lele and J.B. Nganou, MV-algebras derived from ideals in BL-algebras, Fuzzy Sets and Systems 218 (2013) 103–113. https://doi.org/10.1016/j.fss.2012.09.014
[12] C. Lele and J.B. Nganou, Pseudo-addidion and fuzzy ideal in BL-algebras, Annals Math. Inform. 8 (2014) 193–207.
[13] Y. Liu, Y. Qin, X. Qin and Y. Xu, Ideals and fuzzy ideals on residuated lattices, Int. J. Machine Learning and Cybernetics, 8 (2014) 239–253. https://doi.org/10.1007/s13042-014-0317-2
[14] S. Motamed and A.B. Saeid, n-fold obstinate filters in BL-algebras, Neural Comput. Appl. 20 (2011) 461–472. https://doi.org/10.1007/s00521-011-0548-z
[15] A. Paad and R.A. Borzooei, Generalization of integral filters in BL-algebras and n-fold integral BL-algebras, Africa Matematika 26 (2015) 1299–1311. https://doi.org/10.1007/s13370-014-0275-6
[16] A. Paad, n-Fold integral ideals and n-fold Boolean ideals in BL-algebras, Africa Matematika 28 (2017) 971–984. https://doi.org/10.1007/s13370-017-0497-5
[17] A. Paad, Folding theory of implicative and obstinate ideals in BL-algebras, Discuss. Math. Gen. Alg. and Appl. 38 (2018) 255–271. https://doi.org/10.7151/dmgaa.1295
[18] A.B. Saeid and S. Motamed, Some results in BL-algebras, Math. Logic Quarterly 55 (2009) 649–658. https://doi.org/10.1002/Malq.200910025
[19] Y.F. Tchoua, N.B.B. Koguep, A.E.R. Temgoua and C. Lele, n-fold boolean, implicative and integral ideals on bounded commutative residuated lattices, New Math. and Natural Comput. 15 (2019) 427–445. https://doi.org/10.1142/S1793005719500248
[20] Y. Yang and X. Xin, On chracterizations of BL-algebras via implicative ideals, Italian J. Pure and Appl. Math. 37 (2017) 493–506.
[21] O. Zahiri and H. Farahani, n-Fold filters of MTL-algebras, Africa Matematika 25 (2014) 1165–1178. https://doi.org/10.1007/s13370-013-0184-0