Lower Bound for the Number of 4-Element Generating Sets of Direct Products of Two Neighboring Partition Lattices
Discussiones Mathematicae. General Algebra and Applications, Tome 42 (2022) no. 2, pp. 327-338.

Voir la notice de l'article provenant de la source Library of Science

H. Strietz proved in 1975 that the minimum size of a generating set of the partition lattice Part(n) on the n-element set (n ≥ 4) equals 4. This classical result forms the foundation for this study. Strietz's results have been echoed by L. Zádori (1983), who gave a new elegant proof confirming the outcome. Several studies have indeed emerged henceforth concerning four-element generating sets of partition lattices. More recently more studies have presented the approach for the lower bounds on the number λ(n) of the four-element generating sets of Part(n) and statistical approach to λ(n) for small values of n. Also, G. Czédli and the present author have recently proved that certain direct products of partition lattices are also 4-generated. In a recent paper, G. Czédli has shown that this result has connection with information theory. On this basis, here we give a lower bound on the number ν(n) of 4-element generating sets of the direct product Part(n) × Part(n + 1) for n ≥ 7 using the results from previous studies. For n = 1, . . ., 5, we use a computer-aided approach; it gives exact values for n = 1, 2, 3, 4 but we need a statistical method for n = 5.
Keywords: partition lattice, four-element generating set, sublattice, statistics, computer program, direct product of lattices, generating partition lattices
@article{DMGAA_2022_42_2_a5,
     author = {Oluoch, Lilian and Al-Najafi, Amenah},
     title = {Lower {Bound} for the {Number} of {4-Element} {Generating} {Sets} of {Direct} {Products} of {Two} {Neighboring} {Partition} {Lattices}},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {327--338},
     publisher = {mathdoc},
     volume = {42},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2022_42_2_a5/}
}
TY  - JOUR
AU  - Oluoch, Lilian
AU  - Al-Najafi, Amenah
TI  - Lower Bound for the Number of 4-Element Generating Sets of Direct Products of Two Neighboring Partition Lattices
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2022
SP  - 327
EP  - 338
VL  - 42
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2022_42_2_a5/
LA  - en
ID  - DMGAA_2022_42_2_a5
ER  - 
%0 Journal Article
%A Oluoch, Lilian
%A Al-Najafi, Amenah
%T Lower Bound for the Number of 4-Element Generating Sets of Direct Products of Two Neighboring Partition Lattices
%J Discussiones Mathematicae. General Algebra and Applications
%D 2022
%P 327-338
%V 42
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2022_42_2_a5/
%G en
%F DMGAA_2022_42_2_a5
Oluoch, Lilian; Al-Najafi, Amenah. Lower Bound for the Number of 4-Element Generating Sets of Direct Products of Two Neighboring Partition Lattices. Discussiones Mathematicae. General Algebra and Applications, Tome 42 (2022) no. 2, pp. 327-338. http://geodesic.mathdoc.fr/item/DMGAA_2022_42_2_a5/

[1] G. Czédli, Four-generated large equivalence lattices, Acta Sci. Math. (Szeged) 62 (1996) 47–69.

[2] G. Czédli, Lattice generation of small equivalences of a countable set, Order 13 (1996) 11–16. https://doi.org/10.1007/BF00383964

[3] G. Czédli, (1+1+2)-generated equivalence lattices, J. Algebra 221 (1999) 439–462. https://doi.org/10.1006/jabr.1999.8003

[4] G. Czédli, Four-generated direct powers of partition lattices and authentication, Publicationes Mathematicae (Debrecen) (to appear). https://arxiv.org/abs/2004.14509

[5] G. Czédli and L. Oluoch, Four-element generating sets of partition lattices and their direct products, Acta Sci. Math. (Szeged) 86 (2020) 405–448. https://doi.org/10.14232/actasm-020-126-7

[6] J.L. Hodges Jr. and E.L. Lehmann, Basic concepts of probability and statistics (Society for Industrial and Applied Mathematics, 2005). https://doi.org/10.1137/1.9780898719123

[7] M. Lefebvre, Applied probability and statistics (Springer Science & Business Media, 2007). https://doi.org/10.1007/0-387-28505-9

[8] W. Mendenhall, R.J. Beaver and B.M. Beaver, Introduction to probability and statistics (Cengage Learning, 2012).

[9] H. Strietz, Finite partition lattices are four-generated, in: Proc. Lattice Theory Conf., Gudrun Kalmbach (Ed(s)), (Universität Ulm, 1975) 257–259.

[10] H. Strietz, Über Erzeugendenmengen endlicher Partitionenverbände, Studia Sci. Math. Hungar. 12 (1977) 1–17.

[11] L. Zádori, Generation of finite partition lattices, in: Lectures in universal algebra (Szeged, 1983), L. Szabó and Á. Szendrei (Ed(s)), (Math. Soc. János Bolyai and North-Holland, 1986) 573–586. https://doi.org/10.1016/b978-0-444-87759-8.50038-9