Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2022_42_2_a5, author = {Oluoch, Lilian and Al-Najafi, Amenah}, title = {Lower {Bound} for the {Number} of {4-Element} {Generating} {Sets} of {Direct} {Products} of {Two} {Neighboring} {Partition} {Lattices}}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {327--338}, publisher = {mathdoc}, volume = {42}, number = {2}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2022_42_2_a5/} }
TY - JOUR AU - Oluoch, Lilian AU - Al-Najafi, Amenah TI - Lower Bound for the Number of 4-Element Generating Sets of Direct Products of Two Neighboring Partition Lattices JO - Discussiones Mathematicae. General Algebra and Applications PY - 2022 SP - 327 EP - 338 VL - 42 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2022_42_2_a5/ LA - en ID - DMGAA_2022_42_2_a5 ER -
%0 Journal Article %A Oluoch, Lilian %A Al-Najafi, Amenah %T Lower Bound for the Number of 4-Element Generating Sets of Direct Products of Two Neighboring Partition Lattices %J Discussiones Mathematicae. General Algebra and Applications %D 2022 %P 327-338 %V 42 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGAA_2022_42_2_a5/ %G en %F DMGAA_2022_42_2_a5
Oluoch, Lilian; Al-Najafi, Amenah. Lower Bound for the Number of 4-Element Generating Sets of Direct Products of Two Neighboring Partition Lattices. Discussiones Mathematicae. General Algebra and Applications, Tome 42 (2022) no. 2, pp. 327-338. http://geodesic.mathdoc.fr/item/DMGAA_2022_42_2_a5/
[1] G. Czédli, Four-generated large equivalence lattices, Acta Sci. Math. (Szeged) 62 (1996) 47–69.
[2] G. Czédli, Lattice generation of small equivalences of a countable set, Order 13 (1996) 11–16. https://doi.org/10.1007/BF00383964
[3] G. Czédli, (1+1+2)-generated equivalence lattices, J. Algebra 221 (1999) 439–462. https://doi.org/10.1006/jabr.1999.8003
[4] G. Czédli, Four-generated direct powers of partition lattices and authentication, Publicationes Mathematicae (Debrecen) (to appear). https://arxiv.org/abs/2004.14509
[5] G. Czédli and L. Oluoch, Four-element generating sets of partition lattices and their direct products, Acta Sci. Math. (Szeged) 86 (2020) 405–448. https://doi.org/10.14232/actasm-020-126-7
[6] J.L. Hodges Jr. and E.L. Lehmann, Basic concepts of probability and statistics (Society for Industrial and Applied Mathematics, 2005). https://doi.org/10.1137/1.9780898719123
[7] M. Lefebvre, Applied probability and statistics (Springer Science & Business Media, 2007). https://doi.org/10.1007/0-387-28505-9
[8] W. Mendenhall, R.J. Beaver and B.M. Beaver, Introduction to probability and statistics (Cengage Learning, 2012).
[9] H. Strietz, Finite partition lattices are four-generated, in: Proc. Lattice Theory Conf., Gudrun Kalmbach (Ed(s)), (Universität Ulm, 1975) 257–259.
[10] H. Strietz, Über Erzeugendenmengen endlicher Partitionenverbände, Studia Sci. Math. Hungar. 12 (1977) 1–17.
[11] L. Zádori, Generation of finite partition lattices, in: Lectures in universal algebra (Szeged, 1983), L. Szabó and Á. Szendrei (Ed(s)), (Math. Soc. János Bolyai and North-Holland, 1986) 573–586. https://doi.org/10.1016/b978-0-444-87759-8.50038-9