Fuzzy Weakly 2-Absorbing Ideals of a Lattice
Discussiones Mathematicae. General Algebra and Applications, Tome 42 (2022) no. 2, pp. 255-277.

Voir la notice de l'article provenant de la source Library of Science

As a generalization of the concept of a weakly prime ideal, we introduce the concepts of a fuzzy weak prime ideal, a fuzzy weakly 2-absorbing ideal of a lattice. Some results of fuzzy weakly 2-absorbing ideals and fuzzy weakly primary ideals are proved. We also introduce and study fuzzy weakly 2-absorbing ideals in a product of lattices.
Keywords: lattice, fuzzy sublattice, fuzzy ideal, fuzzy weakly prime ideal, weakly 2-absorbing fuzzy ideal
@article{DMGAA_2022_42_2_a1,
     author = {Nimbhorkar, Shriram K. and Patil, Yogita S.},
     title = {Fuzzy {Weakly} {2-Absorbing} {Ideals} of a {Lattice}},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {255--277},
     publisher = {mathdoc},
     volume = {42},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2022_42_2_a1/}
}
TY  - JOUR
AU  - Nimbhorkar, Shriram K.
AU  - Patil, Yogita S.
TI  - Fuzzy Weakly 2-Absorbing Ideals of a Lattice
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2022
SP  - 255
EP  - 277
VL  - 42
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2022_42_2_a1/
LA  - en
ID  - DMGAA_2022_42_2_a1
ER  - 
%0 Journal Article
%A Nimbhorkar, Shriram K.
%A Patil, Yogita S.
%T Fuzzy Weakly 2-Absorbing Ideals of a Lattice
%J Discussiones Mathematicae. General Algebra and Applications
%D 2022
%P 255-277
%V 42
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2022_42_2_a1/
%G en
%F DMGAA_2022_42_2_a1
Nimbhorkar, Shriram K.; Patil, Yogita S. Fuzzy Weakly 2-Absorbing Ideals of a Lattice. Discussiones Mathematicae. General Algebra and Applications, Tome 42 (2022) no. 2, pp. 255-277. http://geodesic.mathdoc.fr/item/DMGAA_2022_42_2_a1/

[1] N. Ajmal and K.V. Thomas, Fuzzy lattices, Infor. Sc. 79 (1994) 271–291. https://doi.org/10.1016/0020-0255(94)90124-4

[2] D.F. Anderson and A. Badawi, On n-absorbing ideals of commutative rings, Comm. Algebra 39 (2011) 1646–1672. https://doi.org/10.1080/00927871003738998

[3] D.D. Anderson and E. Smith, Weakly prime ideals, Houston J. Math. 29 (4) (2003) 831–840.

[4] A. Badawi, On 2 -absorbing ideals of commutative rings, Bull. Austral. Math. Soc. 75 (2007) 417–429. https://doi.org/10.1017/S0004972700039344

[5] A. Badawi and A.Y. Darani, On weakly 2 -absorbing ideals of commutative rings, Hoston J. Math. 39 (2) (2013) 441–452.

[6] K.T. Gaikwad, A Study of Ideals in Lattices and Ordered Structures, Ph.D. Thesis (Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, India, 2018).

[7] G. Grätzer, Lattice Theory: First Concepts and Distributive Lattices (W.H. Freeman and Co. San Francisco, 1971).

[8] B.B.N. Koguep, C. Nkuimi and C. Lele, On fuzzy prime ideals of lattice, Samsa J. Pure and Appl. Math. 3 (2008) 1–11.

[9] S.K. Nimbhorkar and Y.S. Patil, Generalizations of prime fuzzy ideals of a lattice, J. Hyperstructures 9 (2) (2020) 1–33.

[10] S.H. Payrovi and S. Babaei, On 2-absorbing ideals, Inter. Math. Forum 7 (6) (2012) 265–271.

[11] M.P. Wasadikar and K.T. Gaikwad, On 2-absorbing and weakly 2-absorbing ideals of lattices, Math. Sci. Int. Res. J. 4 (2015) 82–85.

[12] M.P. Wasadikar and K.T. Gaikwad, Some properties of 2-absorbing primary ideals in lattices, AKCE Internat. J. Graphs and Combin. 16 (2019) 18–26. https://doi.org/10.1016/j.akcej.2018.01.015

[13] L.A. Zadeh, Fuzzy sets, Infor. and Cont. 8 (1965) 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X