Study of Additively Regular Г-Semirings and Derivations
Discussiones Mathematicae. General Algebra and Applications, Tome 42 (2022) no. 1, pp. 201-215.

Voir la notice de l'article provenant de la source Library of Science

In this paper, the notions of commutator and derivation in additively regular Г-semirings with (A2, Г)-condition are introduced. We also characterize Jordan product for additively regular -semiring and establish some results which investigate the relationship between commutators, derivations and inner derivations. In 1957, E.C. Posner has shown that if there exists a non-zero centralizing derivation in a prime ring R, then R is commutative. This result is extended in the frame work of derivations of prime additively regular Г-semirings.
Keywords: semirings, derivations and commutators, Г-semirings, additively regular Г-semirings
@article{DMGAA_2022_42_1_a8,
     author = {Dadhwal, Madhu and Neelam},
     title = {Study of {Additively} {Regular} {{\CYRG}-Semirings} and {Derivations}},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {201--215},
     publisher = {mathdoc},
     volume = {42},
     number = {1},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2022_42_1_a8/}
}
TY  - JOUR
AU  - Dadhwal, Madhu
AU  - Neelam
TI  - Study of Additively Regular Г-Semirings and Derivations
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2022
SP  - 201
EP  - 215
VL  - 42
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2022_42_1_a8/
LA  - en
ID  - DMGAA_2022_42_1_a8
ER  - 
%0 Journal Article
%A Dadhwal, Madhu
%A Neelam
%T Study of Additively Regular Г-Semirings and Derivations
%J Discussiones Mathematicae. General Algebra and Applications
%D 2022
%P 201-215
%V 42
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2022_42_1_a8/
%G en
%F DMGAA_2022_42_1_a8
Dadhwal, Madhu; Neelam. Study of Additively Regular Г-Semirings and Derivations. Discussiones Mathematicae. General Algebra and Applications, Tome 42 (2022) no. 1, pp. 201-215. http://geodesic.mathdoc.fr/item/DMGAA_2022_42_1_a8/

[1] K.I. Beidar, S.C. Chang, M.A. Chebotar and Y. Fong, On functional identities in left ideals of prime rings, Commun. Alg. 28 (2000) 3041–3058. https://doi.org/10.1080/00927870008827008

[2] G.M. Benkart and J.M. Osborn, Derivations and automorphisms of non associative matrix algebras, Trans. Proc. Amer. Math. Soc. 263 (1981) 411–430. https://doi.org/10.2307/1998359

[3] M. Bresar and J. Vukman, Jordan derivations on prime rings, Bull. Austral. Math. Soc. 37 (1988) 321-322. https://doi.org/10.1017/S0004972700026927

[4] M.A. Chebotar and P.H. Lee, On certain subgroups of prime rings with derivations, Commun. in Alg. 29 (7) (2001) 3083–3087. https://doi.org/10.1081/AGB-5008

[5] J.S. Golan, Semirings and Their Applications (Kluwer Academic Publishers, Dordrecht, 1999).

[6] I.N. Herstein, Lie and Jordan structures in simple, associative rings, Bull. Amer. Math. Soc. 67 (6) (1961) 517–531.

[7] M. Muralikrishna Rao, Г-semirings-I, Southeast Asian Bull. Math. 19 (1995) 49–54.

[8] M. Muralikrishna Rao, Г-semirings-II, Southeast Asian Bull. Math. 21 (1997) 281–287.

[9] R.P. Sharma and Madhu, On connes subgroups and graded semirings, Vietnam J. Math. 38 (3) (2010) 287–298.

[10] R.P. Sharma and Madhu, Prime correspondence between a semiring R and its G-fixed semiring RG, J. Combin. Inf. & Syst. Sci. 35 (2010) 481–499.

[11] R.P. Sharma and T.R. Sharma, G-prime ideals in semirings and their skew group semirings, Commun. Alg. 34 (12) (2006) 4459–4465. https://doi.org/10.1080/00927870600938738

[12] Z. Yang, Derivations in prime Г -rings, J. Math. Res. Expo. 11 (1991) 565–568.