Fuzzy Distributive Pairs in Fuzzy Lattices
Discussiones Mathematicae. General Algebra and Applications, Tome 42 (2022) no. 1, pp. 179-199.

Voir la notice de l'article provenant de la source Library of Science

We generalize the concept of a fuzzy distributive lattice by introducing the concepts of a fuzzy join-distributive pair and a fuzzy join-semidistributive pair in a fuzzy lattice. A relationship among a fuzzy join-distributive pair, a fuzzy join-semidistributive pair and a fuzzy join-modular pair is proved. It is shown that for a pair of fuzzy atoms, the notions of a fuzzy join-distributive pair and a fuzzy join-semidistributive pair coincide.
Keywords: fuzzy lattices, fuzzy modular pair, fuzzy distributive pair, fuzzy semi-distributive pair
@article{DMGAA_2022_42_1_a7,
     author = {Wasadikar, Meenakshi and Khubchandani, Payal},
     title = {Fuzzy {Distributive} {Pairs} in {Fuzzy} {Lattices}},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {179--199},
     publisher = {mathdoc},
     volume = {42},
     number = {1},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2022_42_1_a7/}
}
TY  - JOUR
AU  - Wasadikar, Meenakshi
AU  - Khubchandani, Payal
TI  - Fuzzy Distributive Pairs in Fuzzy Lattices
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2022
SP  - 179
EP  - 199
VL  - 42
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2022_42_1_a7/
LA  - en
ID  - DMGAA_2022_42_1_a7
ER  - 
%0 Journal Article
%A Wasadikar, Meenakshi
%A Khubchandani, Payal
%T Fuzzy Distributive Pairs in Fuzzy Lattices
%J Discussiones Mathematicae. General Algebra and Applications
%D 2022
%P 179-199
%V 42
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2022_42_1_a7/
%G en
%F DMGAA_2022_42_1_a7
Wasadikar, Meenakshi; Khubchandani, Payal. Fuzzy Distributive Pairs in Fuzzy Lattices. Discussiones Mathematicae. General Algebra and Applications, Tome 42 (2022) no. 1, pp. 179-199. http://geodesic.mathdoc.fr/item/DMGAA_2022_42_1_a7/

[1] N. Ajmal and K.V. Thomas, Fuzzy lattices, Information Sci. 79 (1994) 271–291. https://doi.org/10.1016/0020-0255(94)90124-4

[2] I. Chon, Fuzzy partial order relations and fuzzy lattices, Korean J. Math. 17 (4) (2009) 361–374.

[3] G. Gratzer, Lattice Theory Foundations, Springer Verlag, berlin, 2011. https://doi.org/10.1007/978-3-0348-0018-1

[4] S. Maeda, On distributive pairs in lattices, Acta Math. Acad. Sci. Hung. 45 (1985) 133–140. https://doi.org/10.1007/BF01955030

[5] F. Maeda and S. Maeda, Theory of Symmetric Lattices (Springer-Verlag, Berlin, 1970). https://doi.org/10.1007/978-3-642-46248-1

[6] I. Mezzomo, B. Bedregal and R. Santiago, On fuzzy ideals of fuzzy lattices, 2012 IEEE International Conference on Fuzzy Systems, Brisbane, QLD, 2012, 1–5. https://doi.org/10.1109/FUZZ-IEEE.2012.6251307

[7] I. Mezzomo, B. Bedregal and R. Santiago, Operations on bounded fuzzy lattices, IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS) – 2013 Joint, 151–156. https://doi.org/10.1109/IFSA-NAFIPS.2013.6608391

[8] I. Mezzomo, B. Bedregal and R. Santiago, Types of fuzzy ideals in fuzzy lattices, J. Intelligent and Fuzzy Systems 28 (2) (2015) 929–945. https://doi.org/10.3233/IFS-141374

[9] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl. 35 (1971) 512–517. https://doi.org/10.1016/0022-247X(71)90199-5

[10] N.K. Thakare, M.P. Wasadikar and S. Maeda, On modular pairs in semilattices, Alg. Univ. 19 (1984) 255–265. https://doi.org/10.1007/BF01190435

[11] M. Wasadikar and P. Khubchandani, Fuzzy modularity in fuzzy lattices, J. Fuzzy Math. 27 (4) (2019) 985–998.

[12] B. Yaun and W. Wu, Fuzzy ideals on distributive lattices, Fuzzy Sets and Systems 35 (1990) 231–240. https://doi.org/10.1016/0165-0114(90)90196-D

[13] L. Zadeh, Fuzzy sets, Information and Control 8 (1965) 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X

[14] L. Zadeh, Similarity relations and fuzzy orderings, Inform. Sci. 3 (1971) 177–200. https://doi.org/10.1016/S0020-0255(71)80005-1