Prime Ideals of Transitive BE-Algebras
Discussiones Mathematicae. General Algebra and Applications, Tome 42 (2022) no. 1, pp. 97-119 Cet article a éte moissonné depuis la source Library of Science

Voir la notice de l'article

The notion of prime ideals is introduced in transitive BE-algebras. Prime ideals are characterized with the help of principal ideals. Prime ideal theorem is stated and derived for BE-algebras. The concept of minimal prime ideals is introduced in transitive BE-algebras. A decomposition theorem of proper ideals into minimal prime ideals is derived.
Keywords: transitive BE -algebra, ideal, maximal ideal, prime ideal
@article{DMGAA_2022_42_1_a4,
     author = {Prabhakar, M. Bala and Vali, S. Kalesha and Rao, M. Sambasiva},
     title = {Prime {Ideals} of {Transitive} {\protect\emph{BE}-Algebras}},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {97--119},
     year = {2022},
     volume = {42},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2022_42_1_a4/}
}
TY  - JOUR
AU  - Prabhakar, M. Bala
AU  - Vali, S. Kalesha
AU  - Rao, M. Sambasiva
TI  - Prime Ideals of Transitive BE-Algebras
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2022
SP  - 97
EP  - 119
VL  - 42
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2022_42_1_a4/
LA  - en
ID  - DMGAA_2022_42_1_a4
ER  - 
%0 Journal Article
%A Prabhakar, M. Bala
%A Vali, S. Kalesha
%A Rao, M. Sambasiva
%T Prime Ideals of Transitive BE-Algebras
%J Discussiones Mathematicae. General Algebra and Applications
%D 2022
%P 97-119
%V 42
%N 1
%U http://geodesic.mathdoc.fr/item/DMGAA_2022_42_1_a4/
%G en
%F DMGAA_2022_42_1_a4
Prabhakar, M. Bala; Vali, S. Kalesha; Rao, M. Sambasiva. Prime Ideals of Transitive BE-Algebras. Discussiones Mathematicae. General Algebra and Applications, Tome 42 (2022) no. 1, pp. 97-119. http://geodesic.mathdoc.fr/item/DMGAA_2022_42_1_a4/

[1] S.S. Ahn, Y.H. Kim and J.M. Ko, Filters in commutative BE-algebras, Commun. Korean. Math. Soc. 27 (2012) 233–242. https://doi.org/10.4134/CKMS.2012.27.2.233

[2] Z. Ciloglu and Y. Ceven, Commutative and bounded BE-algebras, Algebra 2013 (2013), Article ID 473714, 5 pages. https://doi.org/10.1155/2013/473714

[3] E.Y. Deeba, A characterization of complete BCK-algebras, Math. Seminar Notes, 7 (1979) 343–349.

[4] E.Y. Deeba, Filter theory of BCK-algebras, Math. Japon. 25 (1980) 631–639.

[5] K. Iseki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japon. 23 (1979) 1–26.

[6] Y.B. Jun, S.M. Hong, and J. Meng, Fuzzy BCK-filters, Math. Japon. 47 (1998) 45–49.

[7] H.S. Kim and Y.H. Kim, On BE-algebras, Sci. Math. Japon. 66 (2006) 1299–1302. https://doi.org/10.32219/isms.66.1_−13

[8] J. Meng, BCK-filters, Math. Japon. 44 (1996) 119–129.

[9] B.L. Meng, On filters in BE-algebras, Sci. Math. Japon. 71 (2010) 201–207. https://doi.org/10.32219/isms.71._2−201

[10] C. Muresan, Dense Elements and Classes of Residuated Lattices, Bull. Math. Soc. Sci. Math. Roumanie Tome 53(101) (2010) 11–24. https://www.jstor.org/stable/43679159 .

[11] P. Sun, Homomorphism theorems on dual ideals in BCK-algebras, Soo. J. Math. 26 (2000) 309–316.