Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2022_42_1_a0, author = {Yazarli, Hasret and Davvaz, Bijan and Yilmaz, Damla}, title = {Generalized {Centroid} of {Hyperrings}}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {5--16}, publisher = {mathdoc}, volume = {42}, number = {1}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2022_42_1_a0/} }
TY - JOUR AU - Yazarli, Hasret AU - Davvaz, Bijan AU - Yilmaz, Damla TI - Generalized Centroid of Hyperrings JO - Discussiones Mathematicae. General Algebra and Applications PY - 2022 SP - 5 EP - 16 VL - 42 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2022_42_1_a0/ LA - en ID - DMGAA_2022_42_1_a0 ER -
Yazarli, Hasret; Davvaz, Bijan; Yilmaz, Damla. Generalized Centroid of Hyperrings. Discussiones Mathematicae. General Algebra and Applications, Tome 42 (2022) no. 1, pp. 5-16. http://geodesic.mathdoc.fr/item/DMGAA_2022_42_1_a0/
[1] A. Asokkumar, Hyperlattice formed by the idempotents of a hyperring, Tamkang J. Math. 38 (2007) 209–215. https://doi.org/10.5556/j.tkjm.38.2007.73
[2] H. Bordbar and I. Cristea, Height of prime hyperideals in Krasner hyperrings, Filomat 31(19) (2017) 6153–6163. https://doi.org/10.2298/FIL1719153B
[3] P. Corsini, Prolegomena of Hypergroup Theory (Aviani Editore, 1993).
[4] P. Corsini and V. Leoreanu, Applications of Hyperstructure Theory (Kluwer Academic Publishers, Advances in Math., 2003).
[5] B. Davvaz and V. Leoreanu, Hyperring Theory and Applications (International Academic Press, 2007).
[6] K. Hila and B. Davvaz, An introduction to the theory of algebraic multi-hyperring spaces, Analele Stiintifice ale Universitatii “Ovidius” Constanta 22 (2014) 59–72. https://doi.org/10.2478/auom-2014-0050
[7] M. Jafarpour, H. Aghabozorgi and B. Davvaz, A class of hyperrings connected to preordered generalized Г -rings, European J. Combin. 44 (2015) 236–241. https://doi.org/10.1016/j.ejc.2014.08.009
[8] L. Kamali Ardekani and B. Davvaz, On ( θ, σ ) -derivations of two types of hyperrings, J. Multiple-Valued Logic and Soft Computing 25 (2015) 491–510.
[9] M. Krasner, A class of hyperrings and hyperfields, Int. J. Math. Math. Sci. (1983) 307–312.
[10] W.S. Martindale, Prime rings satisfying a generalized polynomial identity, J. Algebra 12 (1969) 576–584. https://doi.org/10.1016/0021-8693(69)90029-5
[11] F. Marty, “Sur uni generalization de la notion de group”, 8th Congress Math. Scandenaves, Stockholm (1934) 45–49.
[12] S. Mirvakili and B. Davvaz, Applications of the α * -relation to Krasner hyperrings, J. Algebra 362 (2012) 145–156. https://doi.org/10.1016/j.jalgebra.2012.04.011
[13] S. Mirvakili and B. Davvaz, Strongly transitive geometric spaces: Applications to hyperrings, Revista de la Union Matematica Argentina 53 (2012) 43–53.
[14] S. Mirvakili and B. Davvaz, Relationship between rings and hyperrings by using the notion of fundamental relations, Comm. Algebra 41 (2013) 70–82. https://doi.org/10.1080/00927872.2011.622731
[15] M. Norouzi and I. Cristea, Fundamental relation on m-idempotent hyperrings, Open Math. 15 (2017) 1558–1567. https://doi.org/10.1515/math-2017-0128
[16] S. Omidi and B. Davvaz, C haracterizations of bi-hyperideals and prime bihyperideals in ordered Krasner hyperrings, TWMS J. Pure Appl. Math. 8 (2017) 64-82.
[17] S. Omidi, B. Davvaz and P. Corsini, Operations on hyperideals in ordered Krasner hyperrings, Analele Univ. “Ovidius”, Math. Series 24(3) (2016) 275–293. https://doi.org/10.1515/auom-2016-0059
[18] S. Omidi and B. Davvaz, Ordered Krasner hyperrings, Iranian J. Math. Sci. Inform. 12 (2017) 35–49. https://doi.org/10.7508/ijmsi.2017.2.003
[19] M.A. Ozturk and Y.B. Jun, Regularity of the generalized centroid of semi-prime gamma rings, Commun. Korean Math. Soc. 19 (2004) 233–242. https://doi.org/10.4134/CKMS.2004.19.2.233
[20] H. Yazarli, B. Davvaz and D. Yilmaz, Extended centroid of hyperrings . Gulf Journal of Mathematics 8(1) (2020) 6–15.