Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2021_41_2_a7, author = {Farooq, Muhammad and Khan, Raees and Khan, Asghar and Izhar, Muhammad}, title = {Uni-Soft {Quasi-Hyperideals} of {Ordered} {Semihypergroups}}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {321--342}, publisher = {mathdoc}, volume = {41}, number = {2}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2021_41_2_a7/} }
TY - JOUR AU - Farooq, Muhammad AU - Khan, Raees AU - Khan, Asghar AU - Izhar, Muhammad TI - Uni-Soft Quasi-Hyperideals of Ordered Semihypergroups JO - Discussiones Mathematicae. General Algebra and Applications PY - 2021 SP - 321 EP - 342 VL - 41 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2021_41_2_a7/ LA - en ID - DMGAA_2021_41_2_a7 ER -
%0 Journal Article %A Farooq, Muhammad %A Khan, Raees %A Khan, Asghar %A Izhar, Muhammad %T Uni-Soft Quasi-Hyperideals of Ordered Semihypergroups %J Discussiones Mathematicae. General Algebra and Applications %D 2021 %P 321-342 %V 41 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGAA_2021_41_2_a7/ %G en %F DMGAA_2021_41_2_a7
Farooq, Muhammad; Khan, Raees; Khan, Asghar; Izhar, Muhammad. Uni-Soft Quasi-Hyperideals of Ordered Semihypergroups. Discussiones Mathematicae. General Algebra and Applications, Tome 41 (2021) no. 2, pp. 321-342. http://geodesic.mathdoc.fr/item/DMGAA_2021_41_2_a7/
[1] T. Changphas and B. Davvaz, Bi-hyperideals and Quasi-hyperideals in ordered semi-hypergroups, Italian J. Pure Appl. Math.-N 35 (2015) 493–508.
[2] P. Corsini and V. Leoreanu-Fotea, Application of hyperstructure theory (Advanced in Mathematics, Kluwer Academic Publisher). 2003
[3] B. Davvaz, Fuzzy hyperideals in semihypergroups, Italian J. Pure Appl. Math.-N 8 (2000) 67–74.
[4] B. Davvaz, Weak algebraic hyperstructures as a model for interpretation of chemical reactions, Int. J. Math. Chemistry 7 (2016) 267–283. https://doi.org/10.22052/ijmc.2016.13975
[5] B. Davvaz, A.D. Nezhad and M.M. Heidari, Inheritance examples of algebraic hyperstructures, Inform. Sci. 224 (2013) 180–187. https://doi.org/10.1016/j.ins.2012.10.023
[6] M. Farooq, A. Khan, R. Khan and M. Izhar, Characterization of ordered semihypergroups in terms of uni-soft bi-hyperideals, Journal of Algebraic Hyperstructures and Logical Algebras (2020) Inpress.
[7] F. Feng, M.I. Ali and M. Shabir, Soft relations applied to semigroups, Filomat 27 (2013) 1183–1196. https://doi.org/10.2298/FIL1307183F
[8] Y.B. Jun, S.Z. Song and G. Muhiuddin, Concave soft sets, critical soft points, and union-soft ideals of ordered semigroups, The Scientific World Journal 2014 (1–11) Article ID 467968.
[9] Y.B. Jun, K.J. Lee and A. Khan, Soft ordered semigroups, Math. Logic Quarterly 56 (2010) 42–50. https://doi.org/10.1002/malq.200810030
[10] N. Kehayopulu, On Left Regular Ordered Semigroups, Math. Japon. 35 (1990) 1057–1060.
[11] N. Kehayopulu and M. Tsingelis, Regular ordered semigroups in terms of fuzzy subsets, Inform. Sci. 176 (2006) 3675–3693. https://doi.org/10.1016/j.ins.2006.02.004
[12] N. Kehayopulu, On Completely Regular Ordered Semigroups, Sci. Math. 1 (1998) 27–32.
[13] A. Khan, R. Khan and Y.B. Jun, Uni-soft structure applied to ordered semigroups, Soft Comput. 21 (2017) 1021–1030. https://doi.org/10.1007/s00500-015-1837-8
[14] A. Khan, Y.B. Jun, S.I.A. Shah and R. Khan, Applications of soft union sets in ordered semigroups via uni-soft quasi-ideals, J. Intell. Fuzzy Syst. 30 (2016) 97–107. https://doi.org/10.3233/IFS-151734
[15] A. Khan, M. Farooq and H. Khan, Uni-soft hyperideals of ordered semihypergroups, J. Intell. Fuzzy Sys. 35 (2018) 4557–4571. https://doi.org/10.3233/JIFS-161821
[16] A. Khan, M. Farooq and B. Davvaz, Characterizations of ordered semihypergroups by the properties of their intersectional-soft generalized bi-hyperideals, Soft Comput. 22 (2018) 3001–3010. https://doi.org/10.1007/s00500-017-2550-6
[17] A. Khan, M. Farooq and N. Yaqoob, Uni-soft structures applied to ordered-semihypergroups, Proc. of the Nat. Acad. of Sci., India Section A: Phys. Sci. 90 (2020) 457–465. https://doi.org/10.1007/s40010-019-00602-x
[18] F. Marty, Sur Une generalization de la notion de group, 8 iem congress, Math. Scandinaves Stockholm (1934) 45–49.
[19] D. Molodtsov, Soft set theory—first results, Comput. Math. Appl. 37 (1999) 19–31. https://doi.org/10.1016/S0898-1221(99)00056-5
[20] S. Naz and M. Shabir, On prime soft bi-hyperideals of semihypergroups, J. Intell. Fuzzy Sys. 26 (2014) 1539–1546. https://doi.org/10.3233/IFS-130837
[21] B.O. Onasanya, A Note on Hyperstructres and Some Applications, International J. Math. Combin. 4 (2017) 60–67.
[22] B. Pibaljommee and B. Davvaz, Characterizations of (fuzzy) bi-hyperideals in ordered semihypergroups, J. Intell. Fuzzy Sys. 28 (2015) 2141–2148. https://doi.org/10.3233/IFS-141494
[23] B. Pibaljommee, K. Wannatong and B. Davvaz, An investigation on fuzzy hyper-ideals of ordered semihypergroups, Quasigroups and Related Systems 23 (2015) 297–308.
[24] M. Shabir and A. Khan, Fuzzy Quasi-Ideals of Ordered Semigroups, Bull. Malays. Math. Sci. Soc 34 (2011) 87–102. https://doi.org/10.20454/ijas.2012.424
[25] J. Tang, A. Khan and Y.F. Luo, Characterization of semisimple ordered semihyper-groups in terms of fuzzy hyperideals, J. Intell. Fuzzy Sys. 30 (2016) 1735–1753. https://doi.org/10.3233/IFS-151884
[26] J. Zhan, N.Čağman and A.S. Sezer, Applications of soft union sets to hemirings via SU - h -ideals, J. Intell. Fuzzy Sys. 26 (2014) 1363-1370. https://doi.org/10.3233/IFS-130822