On eGE-Algebras
Discussiones Mathematicae. General Algebra and Applications, Tome 41 (2021) no. 2, pp. 395-409.

Voir la notice de l'article provenant de la source Library of Science

A new algebraic structure was introduced, called an eGE-algebra, which is a generalisation of a GE-algebra and investigated its properties. We explore the definition of filters and the quotient algebra associated with such filters.
Keywords: BE-algebra, GE-algebra, eGE-algebra, transitive, filter
@article{DMGAA_2021_41_2_a11,
     author = {Bandaru, R.K. and Rafi, N. and Rezaei, A.},
     title = {On {eGE-Algebras}},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {395--409},
     publisher = {mathdoc},
     volume = {41},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2021_41_2_a11/}
}
TY  - JOUR
AU  - Bandaru, R.K.
AU  - Rafi, N.
AU  - Rezaei, A.
TI  - On eGE-Algebras
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2021
SP  - 395
EP  - 409
VL  - 41
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2021_41_2_a11/
LA  - en
ID  - DMGAA_2021_41_2_a11
ER  - 
%0 Journal Article
%A Bandaru, R.K.
%A Rafi, N.
%A Rezaei, A.
%T On eGE-Algebras
%J Discussiones Mathematicae. General Algebra and Applications
%D 2021
%P 395-409
%V 41
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2021_41_2_a11/
%G en
%F DMGAA_2021_41_2_a11
Bandaru, R.K.; Rafi, N.; Rezaei, A. On eGE-Algebras. Discussiones Mathematicae. General Algebra and Applications, Tome 41 (2021) no. 2, pp. 395-409. http://geodesic.mathdoc.fr/item/DMGAA_2021_41_2_a11/

[1] R.K. Bandaru, A. Borumand Saeid and Y.B. Jun, On GE-algebras, Bulletin of the Section of Logic, (2020), in press. https://doi.org/10.18778/0138-0680.2020.20

[2] A. Borumand Saeid, A. Rezaei and R.A. Borzooei, Some types of filters in BE-algebras, Math. Comput. Sci. 7 (2013) 341–352. https://doi.org/10.1007/s11786-013-0157-6

[3] S. Celani, A note on homomorphisms of Hilbert algebras, Internat. J. Math. and Math. Sci. 29 (2002) 55–61. https://doi.org/10.1155/S0161171202011134

[4] I. Chajda and R. Halas, Congruences and ideals in Hilbert algebras, Kyungpook Math. J. 39 (1999) 429–432.

[5] I. Chajda, R. Halas and Y.B. Jun, Annihilators and deductive systems in commutative Hilbert algebras, Comment. Math. Univ. Carolinae 43 (2002) 407–417.

[6] A. Diego, Sur les algebres de Hilbert, Collection de Logique Mathematique, Edition Hermann, Ser. A, XXI, 1966.

[7] Y.B. Jun, Commutative Hilbert algebras, Soochow J. Math. 22 (1996) 477–484.

[8] Y.B. Jun and K.H. Kim, H-filters of Hilbert algebras, Sci. Math. Jpn. e-2005, 231–236.

[9] S.M. Hong and Y.B. Jun, On deductive systems of Hilbert algebras, Comm. Korean Math. Soc. 11 (1996) 595–600.

[10] I. Iséki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Jpn. 23 (1978) 1–26.

[11] K. Iseki, On BCI-algebras, Mathematics Seminar Notes (Kobe University) 8 (1980) 125–130.

[12] H.S. Kim and Y.H. Kim, On BE-algebras, Sci. Math. Jpn. 66 (2007) 113–116.

[13] A.S. Nasab and A. Borumand Saeid, Semi maximal filter in Hilbert algebras, J. Intelligent & Fuzzy Systems 30 (2016) 7–15. https://doi.org/10.3233/IFS-151706

[14] A.S. Nasab and A. Boruman Saeid, Stonean Hilbert algebra, J. Intelligent & Fuzzy Systems 30 (2016) 485–492. https://doi.org/10.3233/IFS-151773

[15] A.S. Nasab and A. Borumand Saeid, Study of Hilbert algebras in point of filters, An St. Univ. Ovidius Constanta 24 (2016) 221–251. https://doi.org/10.1515/auom-2016-0039

[16] A. Rezaei, A. Borumand Saeid and R.A. Borzooei, Relation between Hilbert algebras and BE-algebras, Appl. Math. 8 (2013) 573–584.

[17] A. Rezaei and A. Borumand Saeid, Relation between Dual S-algebras and BE-algebras, Le Matematiche 70 (2015) 71–79. https://doi.org/10.4418/2015.70.1.5

[18] A. Rezaei and A. Borumand Saeid, Relation between BE-algebras and g-Hilbert algebras, Discuss. Math. Gen. Alg. Appl. 38 (2018) 33–45. https://doi.org/10.7151/dmgaa.1285

[19] A. Rezaei and A. Borumand Saeid, Some results in BE-algebras, An. Univ. Oradea, Fasc. Math. 19 (2012) 33–44.

[20] A. Rezaei, A. Borumand Saeid and A. Radfar, On eBE-algebra, TWMS J. Pure Appl. Math. 7 (2016) 200–210.