On Sheffer Stroke Up-Algebras
Discussiones Mathematicae. General Algebra and Applications, Tome 41 (2021) no. 2, pp. 381-394.

Voir la notice de l'article provenant de la source Library of Science

In this paper, we introduce Sheffer Stroke UP-algebra (in short, SUP-algebra) and study its properties. We demonstrate that the Cartesian product of two SUP-algebras is a SUP-algebra. After presenting SUP-subalgebras, we define SUP-homomorphisms between SUP-algebras.
Keywords: SUP-algebra, Sheffer stroke operation, SUP-homomorphism
@article{DMGAA_2021_41_2_a10,
     author = {Oner, Tahsin and Katican, Tugce and Saeid, Arsham Borumand},
     title = {On {Sheffer} {Stroke} {Up-Algebras}},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {381--394},
     publisher = {mathdoc},
     volume = {41},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2021_41_2_a10/}
}
TY  - JOUR
AU  - Oner, Tahsin
AU  - Katican, Tugce
AU  - Saeid, Arsham Borumand
TI  - On Sheffer Stroke Up-Algebras
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2021
SP  - 381
EP  - 394
VL  - 41
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2021_41_2_a10/
LA  - en
ID  - DMGAA_2021_41_2_a10
ER  - 
%0 Journal Article
%A Oner, Tahsin
%A Katican, Tugce
%A Saeid, Arsham Borumand
%T On Sheffer Stroke Up-Algebras
%J Discussiones Mathematicae. General Algebra and Applications
%D 2021
%P 381-394
%V 41
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2021_41_2_a10/
%G en
%F DMGAA_2021_41_2_a10
Oner, Tahsin; Katican, Tugce; Saeid, Arsham Borumand. On Sheffer Stroke Up-Algebras. Discussiones Mathematicae. General Algebra and Applications, Tome 41 (2021) no. 2, pp. 381-394. http://geodesic.mathdoc.fr/item/DMGAA_2021_41_2_a10/

[1] J.C. Abbott, Implicational algebras, Bulletin Mathématique de la Société des Sciences Mathématiques de la République Socialiste de Roumanie 11(59) (1967) 3–23.

[2] I. Chajda, Sheffer operation in ortholattices, Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 44 (2005) 19–23.

[3] R.L. Cignoli, I.M. d’Ottaviano and D. Mundici, Algebraic Foundations of Many-Valued Reasoning (Springer Science and Business Media, 2013). https://doi.org/10.1007/978-94-015-9480-6

[4] G. Grätzer, General Lattice Theory (Springer Science and Business Media, 2002). https://doi.org/10.1007/978-3-0348-7633-9

[5] A. Iampan, A New Branch of the Logical Algebra:UP-algebras, J. Alg Related Topics 5 (2017) 35–54. https://doi.org/10.22124/JART.2017.2403

[6] W. McCune, R. Vero, B. Fitelson, K. Harris, A. Feist and L. Wos, Short single axioms for Boolean algebra, J. Automat. Reas. 29 (2002) 1–16. https://doi.org/10.1023/A:1020542009983

[7] T. Oner, T. Katican, A. Borumand Saeid and M. Terziler, Filters of strong Sheffer stroke non-associative MV-algebras, Analele Stiintifice ale Universitatii Ovidius Constanta 29 (2021) 143–164. https://doi.org/10.2478/auom-2021-0010

[8] T. Oner, T. Katican and A. Borumand Saeid, Relation between Sheffer stroke operation and Hilbert algebras, Categories and General Algebraic Structures with Applications 14 (2021) 245–268. https://doi.org/10.29252/egasa.14.1.245

[9] T. Oner, T. Katican and A. Borumand Saeid, ( Fuzzy ) filters of Sheffer stroke BL-algebras, Kragujevac J. Math. 47 (2023) 39–55.

[10] T. Oner, T. Kalkan and N.K. Gursoy, Sheffer stroke BG-algebras, Int. J. Maps in Math. 4 (2021) 27–30.

[11] D.A. Romano, Notes on UP-ideals in UP-algebras, Commun. Adv. Math. Sci. I(1) (2018) 35–38. https://doi.org/10.33434/cams.440197

[12] D.A. Romano, Some Properties of Proper UP-filters of UP-algebras, Fund. J. Math. Appl. 1 (2018) 109–111. https://doi.org/10.33401/fujma.439246

[13] D.A. Romano, Proper UP-filters of UP-algebra, Univ. J. Math. Appl. 1 (2018) 98–100. https://doi.org/10.32323/ujma.417844

[14] D.A. Romano, UP-algebra with apartness, preprint (April, 2018).

[15] D.A. Romano, Pseudo-UP algebras, an introduction, Bull. Int. Math. Virtual Inst. 10 (2020) 349–355. https://doi.org/10.7251/BIMVI2002349R

[16] D.A. Romano, Homomorphisms of Pseudo-UP algebras, Bull. Int. Math. Virtual Inst. 11 (2021) 47–53. https://doi.org/10.7251/BIMVI2101047R

[17] H.M. Sheffer, A set of five independent postulates for Boolean algebras, with application to logical constants, Trans. Amer. Math. Soc. 14 (1913) 481–488. https://doi.org/10.2307/1988701