On nd-K*(n, r)-Full Hypersubstitutions
Discussiones Mathematicae. General Algebra and Applications, Tome 41 (2021) no. 2, pp. 213-227
Cet article a éte moissonné depuis la source Library of Science
Based on the notion of K*(n, r)-full terms defined by the authors, nd-K*(n, r)-full hypersubstitutions are defined. It turns out that the extension of an nd-K*(n, r)-full hypersubstitution is an endomorphism of the algebra of tree languages of nd-K*(n, r)-full terms.
Keywords:
full term, nd-full hypersubstitution, K*(n, r)-full term, nd-K*(n, r)-full hypersubstitution
@article{DMGAA_2021_41_2_a0,
author = {Wattanatripop, Khwancheewa and Changphas, Thawhat},
title = {On {nd-K*(n,} {r)-Full} {Hypersubstitutions}},
journal = {Discussiones Mathematicae. General Algebra and Applications},
pages = {213--227},
year = {2021},
volume = {41},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGAA_2021_41_2_a0/}
}
TY - JOUR AU - Wattanatripop, Khwancheewa AU - Changphas, Thawhat TI - On nd-K*(n, r)-Full Hypersubstitutions JO - Discussiones Mathematicae. General Algebra and Applications PY - 2021 SP - 213 EP - 227 VL - 41 IS - 2 UR - http://geodesic.mathdoc.fr/item/DMGAA_2021_41_2_a0/ LA - en ID - DMGAA_2021_41_2_a0 ER -
Wattanatripop, Khwancheewa; Changphas, Thawhat. On nd-K*(n, r)-Full Hypersubstitutions. Discussiones Mathematicae. General Algebra and Applications, Tome 41 (2021) no. 2, pp. 213-227. http://geodesic.mathdoc.fr/item/DMGAA_2021_41_2_a0/
[1] K. Denecke and N. Sarasit, Products of tree languages, Bulletin of the Section of Logic 40 (2011) 13–36.
[2] K. Denecke and N. Sarasit, Semigroups of tree languages, Asian-Eur. J. Math. 1 (2008) 489–507. https://doi.org/10.1142/S1793557108000400
[3] K. Denecke, P. Glubudom, and J. Koppitz, Power clones and non-deterministic hypersubstitutions, Asian-Eur. J. Math. 1 (2008) 177–188. https://doi.org/10.1142/S1793557108000175
[4] S. Lekkoksung, Monoids of nd-full hypersubstitutions, Discuss. Math. Gen. Alg. Appl. 39 (2019) 165–179. https://doi.org/10.7151/dmgaa.1314
[5] K. Wattanatripop and T. Changphas, The clone of K*(n, r)-full terms, Discuss. Math. Gen. Alg. Appl. 39 (2019) 277–288. https://doi.org/10.7151/dmgaa.1319